論文の概要: From Superficial to Deep: Integrating External Knowledge for Follow-up Question Generation Using Knowledge Graph and LLM
- arxiv url: http://arxiv.org/abs/2504.05801v1
- Date: Tue, 08 Apr 2025 08:31:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:30:15.458455
- Title: From Superficial to Deep: Integrating External Knowledge for Follow-up Question Generation Using Knowledge Graph and LLM
- Title(参考訳): 表面から深部へ:知識グラフとLLMを用いたフォローアップ質問生成のための外部知識の統合
- Authors: Jianyu Liu, Yi Huang, Sheng Bi, Junlan Feng, Guilin Qi,
- Abstract要約: 会話システムでは、コンテキストに基づいたフォローアップ質問を動的に生成することで、ユーザが情報を調べるのに役立つ。
本稿では,3段階の外部知識を付加したフォローアップ質問生成手法を提案する。
- 参考スコア(独自算出の注目度): 19.826039292102728
- License:
- Abstract: In a conversational system, dynamically generating follow-up questions based on context can help users explore information and provide a better user experience. Humans are usually able to ask questions that involve some general life knowledge and demonstrate higher order cognitive skills. However, the questions generated by existing methods are often limited to shallow contextual questions that are uninspiring and have a large gap to the human level. In this paper, we propose a three-stage external knowledge-enhanced follow-up question generation method, which generates questions by identifying contextual topics, constructing a knowledge graph (KG) online, and finally combining these with a large language model to generate the final question. The model generates information-rich and exploratory follow-up questions by introducing external common sense knowledge and performing a knowledge fusion operation. Experiments show that compared to baseline models, our method generates questions that are more informative and closer to human questioning levels while maintaining contextual relevance.
- Abstract(参考訳): 会話システムでは、コンテキストに基づいたフォローアップ質問を動的に生成することで、ユーザが情報を探索し、より良いユーザエクスペリエンスを提供するのに役立つ。
人間は通常、一般的な生活知識を含む質問をし、より高次の認知能力を示すことができる。
しかし、既存の手法が生み出す質問は、刺激を受けず、人間のレベルに大きなギャップがある、浅い文脈の質問に限られることが多い。
本稿では、文脈トピックを特定し、知識グラフ(KG)をオンラインで構築し、最終的にこれらを大規模言語モデルと組み合わせて最終質問を生成する3段階の外部知識強調質問生成手法を提案する。
このモデルは、外部共通感覚知識を導入し、知識融合操作を行うことにより、情報豊かで探索的なフォローアップ質問を生成する。
実験の結果,本手法はベースラインモデルと比較して,文脈的関連性を維持しつつ,人間の質問レベルに近づいた質問を生成することがわかった。
関連論文リスト
- Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
大規模言語モデル(LLM)は、下流の知識集約タスクのための情報検索技術より優れている。
しかし、コミュニティの懸念は、この無検閲の知識を使用することの事実と潜在的意味について多岐にわたる。
本研究では,6つの重要な視点から生成した知識を評価するために設計されたCONNERを紹介する。
論文 参考訳(メタデータ) (2023-10-11T08:22:37Z) - FOLLOWUPQG: Towards Information-Seeking Follow-up Question Generation [38.78216651059955]
実世界の情報検索フォローアップ質問生成(FQG)の課題について紹介する。
オープンエンド質問に対するRedditフレンドリーな説明を提供するフォーラムレイマンから収集した,3K以上の実世界のデータセット(初期質問,回答,フォローアップ質問)であるFOLLOWUPQGを構築した。
既存のデータセットとは対照的に、FOLLOWUPQGの質問は情報を求めるためにより多様な実用的戦略を使用し、高次認知能力も示している。
論文 参考訳(メタデータ) (2023-09-10T11:58:29Z) - What should I Ask: A Knowledge-driven Approach for Follow-up Questions
Generation in Conversational Surveys [63.51903260461746]
対話型調査における知識駆動型フォローアップ質問生成のための新しい課題を提案する。
そこで我々は,対話履歴とラベル付き知識を用いた人手によるフォローアップ質問の新しいデータセットを構築した。
次に,その課題に対する2段階の知識駆動モデルを提案する。
論文 参考訳(メタデータ) (2022-05-23T00:57:33Z) - Enhancing Question Generation with Commonsense Knowledge [33.289599417096206]
質問生成プロセスにコモンセンス知識を導入するためのマルチタスク学習フレームワークを提案する。
SQuAD実験の結果,提案手法は自動評価と人的評価の両方でQG性能を著しく向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-06-19T08:58:13Z) - Contextualized Knowledge-aware Attentive Neural Network: Enhancing
Answer Selection with Knowledge [77.77684299758494]
ナレッジグラフ(KG)による外部知識による回答選択モデル向上のアプローチを幅広く検討しています。
まず、KGの外部知識とテキスト情報との密接な相互作用を考慮し、QA文表現を学習するコンテキスト知識相互作用学習フレームワークであるナレッジアウェアニューラルネットワーク(KNN)を紹介します。
KG情報の多様性と複雑性に対処するために, カスタマイズされたグラフ畳み込みネットワーク (GCN) を介して構造情報を用いた知識表現学習を改善し, コンテキストベースおよび知識ベースの文表現を総合的に学習する コンテキスト型知識認識型アテンシブニューラルネットワーク (CKANN) を提案する。
論文 参考訳(メタデータ) (2021-04-12T05:52:20Z) - Knowledge-Routed Visual Question Reasoning: Challenges for Deep
Representation Embedding [140.5911760063681]
VQAモデル評価のためのナレッジルーティング視覚質問推論という新しいデータセットを提案する。
視覚ゲノムシーングラフと外部知識ベースの両方に基づいて,制御プログラムを用いて質問応答対を生成する。
論文 参考訳(メタデータ) (2020-12-14T00:33:44Z) - Question Answering over Knowledge Base using Language Model Embeddings [0.0]
本稿では,知識ベース質問回答タスクにおける事前学習言語モデルの利用に焦点を当てる。
さらに,これらの埋め込みを知識ベースから質問まで,双方向の注意機構で微調整した。
提案手法は,質問事項を表現するためのマルチヘッドアテンション機構を備えた,単純な畳み込みニューラルネットワークアーキテクチャに基づいている。
論文 参考訳(メタデータ) (2020-10-17T22:59:34Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
InQUISITIVEは、文書を読みながら19K質問を抽出するデータセットである。
我々は,読者が情報を求めるための実践的な戦略に携わることを示す。
我々は, GPT-2に基づく質問生成モデルを評価し, 妥当な質問を生成することができることを示す。
論文 参考訳(メタデータ) (2020-10-04T19:03:39Z) - Stay Hungry, Stay Focused: Generating Informative and Specific Questions
in Information-Seeking Conversations [41.74162467619795]
情報非対称な会話における情報的質問生成の問題について検討する。
実践的な質問を生成するために,情報量測定を最適化するために強化学習を用いる。
そこで本研究では,提案した実用的質問は,ベースラインモデル上で生成した質問の有意性と特異性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2020-04-30T00:49:14Z) - Unsupervised Commonsense Question Answering with Self-Talk [71.63983121558843]
本稿では,コモンセンスタスクの代替として,セルフトークに基づく教師なしフレームワークを提案する。
探索に基づく探索学習にインスパイアされた我々のアプローチは、質問を求める多くの情報で言語モデルに問い合わせる。
実験結果から,ゼロショット言語モデルベースラインの性能が大幅に向上することが示唆された。
論文 参考訳(メタデータ) (2020-04-11T20:43:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。