論文の概要: On the Importance of Conditioning for Privacy-Preserving Data Augmentation
- arxiv url: http://arxiv.org/abs/2504.05849v1
- Date: Tue, 08 Apr 2025 09:27:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:29:43.720473
- Title: On the Importance of Conditioning for Privacy-Preserving Data Augmentation
- Title(参考訳): プライバシ保護データ強化のためのコンディショニングの重要性について
- Authors: Julian Lorenz, Katja Ludwig, Valentin Haug, Rainer Lienhart,
- Abstract要約: 私たちは、候補者のプールから人々を正しく識別できるモデルをトレーニングします。
条件付き拡散モデルを用いた匿名化はブラックボックス攻撃の影響を受けやすいことを示す。
- 参考スコア(独自算出の注目度): 11.874560263468231
- License:
- Abstract: Latent diffusion models can be used as a powerful augmentation method to artificially extend datasets for enhanced training. To the human eye, these augmented images look very different to the originals. Previous work has suggested to use this data augmentation technique for data anonymization. However, we show that latent diffusion models that are conditioned on features like depth maps or edges to guide the diffusion process are not suitable as a privacy preserving method. We use a contrastive learning approach to train a model that can correctly identify people out of a pool of candidates. Moreover, we demonstrate that anonymization using conditioned diffusion models is susceptible to black box attacks. We attribute the success of the described methods to the conditioning of the latent diffusion model in the anonymization process. The diffusion model is instructed to produce similar edges for the anonymized images. Hence, a model can learn to recognize these patterns for identification.
- Abstract(参考訳): 潜在拡散モデルは、強化トレーニングのためにデータセットを人工的に拡張する強力な拡張方法として使用できる。
人間の目では、これらの強化されたイメージはオリジナルと非常に異なるように見える。
これまでの研究は、データ匿名化にこのデータ拡張技術を使うことを示唆している。
しかし,拡散過程を導出する深度マップやエッジなどの特徴に規定された潜伏拡散モデルは,プライバシ保護法として適していないことを示す。
私たちは、候補者のプールから人々を正しく識別できるモデルをトレーニングするために、対照的な学習アプローチを使用します。
さらに,条件付き拡散モデルを用いた匿名化はブラックボックス攻撃の影響を受けやすいことを示す。
提案手法は,匿名化プロセスにおける潜伏拡散モデルの条件付けによるものである。
拡散モデルは、匿名化画像の類似したエッジを生成するように指示される。
したがって、モデルはこれらのパターンを識別するために認識することを学ぶことができる。
関連論文リスト
- Towards Reliable Verification of Unauthorized Data Usage in Personalized Text-to-Image Diffusion Models [23.09033991200197]
新しいパーソナライズ技術は、特定のテーマやスタイルのイメージを作成するために、事前訓練されたベースモデルをカスタマイズするために提案されている。
このような軽量なソリューションは、パーソナライズされたモデルが不正なデータからトレーニングされているかどうかに関して、新たな懸念を生じさせる。
我々は、ブラックボックスパーソナライズされたテキスト・ツー・イメージ拡散モデルにおいて、不正なデータ使用を積極的に追跡する新しい手法であるSIRENを紹介する。
論文 参考訳(メタデータ) (2024-10-14T12:29:23Z) - Learning Differentially Private Diffusion Models via Stochastic Adversarial Distillation [20.62325580203137]
DP-SADは, 逆蒸留法により個人拡散モデルを訓練する。
画像の質を向上するために,画像が教師と学生のどちらであるかを識別する識別器を導入する。
論文 参考訳(メタデータ) (2024-08-27T02:29:29Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
本稿では,生の画素空間ではなく,潜在空間における非知覚的対角的アイデンティティ摂動を生成できる統一的なフレームワークAdv-Diffusionを提案する。
具体的には,周囲のセマンティックな摂動を生成するために,個人性に敏感な条件付き拡散生成モデルを提案する。
設計された適応強度に基づく対向摂動アルゴリズムは、攻撃の伝達性とステルス性の両方を確保することができる。
論文 参考訳(メタデータ) (2023-12-18T15:25:23Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
ガイダンスは拡散モデルにおいて重要な概念として機能するが、その効果は追加のデータアノテーションや事前学習の必要性によって制限されることが多い。
本稿では,拡散モデルからガイダンスを抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T11:19:11Z) - DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models [79.71665540122498]
保護されたデータセットにインジェクトされたコンテンツを配置することで、不正なデータ利用を検出する手法を提案する。
具体的には、ステルス画像ワープ機能を用いて、これらの画像にユニークな内容を追加することにより、保護された画像を修正する。
このモデルが注入されたコンテンツを記憶したかどうかを解析することにより、不正に不正に使用したモデルを検出することができる。
論文 参考訳(メタデータ) (2023-07-06T16:27:39Z) - Training Diffusion Models with Reinforcement Learning [82.29328477109826]
拡散モデルは、ログのような目的に近似して訓練される。
本稿では,下流目的のための拡散モデルを直接最適化するための強化学習手法について検討する。
本稿では,多段階決定問題としてデノベーションを行うことによって,ポリシー勾配アルゴリズムのクラスを実現する方法について述べる。
論文 参考訳(メタデータ) (2023-05-22T17:57:41Z) - Diffusion Models as Masked Autoencoders [52.442717717898056]
拡散モデルに対する近年の関心を踏まえて、生成的に事前学習された視覚表現を再考する。
拡散モデルによる直接事前学習では強い表現は得られないが、マスク付き入力上での拡散モデルと公式拡散モデルをマスク付きオートエンコーダ(DiffMAE)として条件付ける。
設計選択の長所と短所について包括的な研究を行い、拡散モデルとマスク付きオートエンコーダ間の接続を構築する。
論文 参考訳(メタデータ) (2023-04-06T17:59:56Z) - Extracting Training Data from Diffusion Models [77.11719063152027]
拡散モデルはトレーニングデータから個々の画像を記憶し,生成時に出力することを示す。
生成とフィルタのパイプラインを用いて、最先端のモデルから数千以上のトレーニング例を抽出する。
さまざまな設定で何百もの拡散モデルをトレーニングし、モデリングとデータ決定の違いがプライバシに与える影響を分析する。
論文 参考訳(メタデータ) (2023-01-30T18:53:09Z) - DAG: Depth-Aware Guidance with Denoising Diffusion Probabilistic Models [23.70476220346754]
拡散モデルの豊かな中間表現から得られた推定深度情報を利用する拡散モデルのための新しいガイダンス手法を提案する。
実験と広範囲にわたるアブレーション研究により,幾何学的に妥当な画像生成に向けた拡散モデルの導出における本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-12-17T12:47:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。