論文の概要: Learning Differentially Private Diffusion Models via Stochastic Adversarial Distillation
- arxiv url: http://arxiv.org/abs/2408.14738v1
- Date: Tue, 27 Aug 2024 02:29:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 15:14:31.880102
- Title: Learning Differentially Private Diffusion Models via Stochastic Adversarial Distillation
- Title(参考訳): 確率的対数蒸留による個人差分拡散モデルの学習
- Authors: Bochao Liu, Pengju Wang, Shiming Ge,
- Abstract要約: DP-SADは, 逆蒸留法により個人拡散モデルを訓練する。
画像の質を向上するために,画像が教師と学生のどちらであるかを識別する識別器を導入する。
- 参考スコア(独自算出の注目度): 20.62325580203137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While the success of deep learning relies on large amounts of training datasets, data is often limited in privacy-sensitive domains. To address this challenge, generative model learning with differential privacy has emerged as a solution to train private generative models for desensitized data generation. However, the quality of the images generated by existing methods is limited due to the complexity of modeling data distribution. We build on the success of diffusion models and introduce DP-SAD, which trains a private diffusion model by a stochastic adversarial distillation method. Specifically, we first train a diffusion model as a teacher and then train a student by distillation, in which we achieve differential privacy by adding noise to the gradients from other models to the student. For better generation quality, we introduce a discriminator to distinguish whether an image is from the teacher or the student, which forms the adversarial training. Extensive experiments and analysis clearly demonstrate the effectiveness of our proposed method.
- Abstract(参考訳): ディープラーニングの成功は大量のトレーニングデータセットに依存するが、プライバシに敏感なドメインではデータが制限されることが多い。
この課題に対処するために、差分プライバシーを持つ生成モデル学習は、脱感作データ生成のためのプライベート生成モデルを訓練するためのソリューションとして登場した。
しかし,既存の手法によって生成された画像の品質は,データ分散のモデル化の複雑さによって制限されている。
我々は拡散モデルの成功に基づいてDP-SADを導入し,確率的対角蒸留法によりプライベート拡散モデルを訓練する。
具体的には、まず教師として拡散モデルを訓練し、次に蒸留により学生を訓練し、学生に他のモデルからの勾配にノイズを加えることで差分プライバシーを達成する。
画像が教師と生徒のどちらであるかを識別する識別器を導入し,対人訓練を行う。
大規模実験と解析により,提案手法の有効性が明らかとなった。
関連論文リスト
- Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - Gradient Inversion of Federated Diffusion Models [4.1355611383748005]
拡散モデルは、非常に高解像度の画像データを生成する欠陥生成モデルになりつつある。
本稿では,勾配反転攻撃のプライバシーリスクについて検討する。
本稿では,未知データの最適化をコーディネートする三重最適化GIDM+を提案する。
論文 参考訳(メタデータ) (2024-05-30T18:00:03Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
実世界のデータセットで訓練された拡散モデルは、尾クラスの忠実度が劣ることが多い。
拡散モデルを含む深い生成モデルは、豊富な訓練画像を持つクラスに偏りがある。
本研究では,異なるクラスに対する合成画像の分布の重複を最小限に抑えるために,コントラスト学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-02-16T16:47:21Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
ファインチューニング拡散モデル : 生成人工知能(GenAI)の最前線
本稿では,拡散モデル(SPIN-Diffusion)のための自己演奏ファインチューニングという革新的な手法を紹介する。
提案手法は従来の教師付き微調整とRL戦略の代替として,モデル性能とアライメントの両方を大幅に改善する。
論文 参考訳(メタデータ) (2024-02-15T18:59:18Z) - Expanding Expressiveness of Diffusion Models with Limited Data via
Self-Distillation based Fine-Tuning [24.791783885165923]
限られたデータセット上での拡散モデルの訓練は、限られた生成能力と表現性の観点から問題を引き起こす。
これらの課題に対処するために、SDFT(Self-Distillation for Fine-Tuning diffusion model)を提案する。
論文 参考訳(メタデータ) (2023-11-02T06:24:06Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - Phoenix: A Federated Generative Diffusion Model [6.09170287691728]
大規模な集中型データセットで生成モデルをトレーニングすることで、データのプライバシやセキュリティ、アクセシビリティといった面での課題が発生する可能性がある。
本稿では,フェデレートラーニング(FL)技術を用いて,複数のデータソースにまたがる拡散確率モデル(DDPM)の学習手法を提案する。
論文 参考訳(メタデータ) (2023-06-07T01:43:09Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
本稿では,任意の生成モデルの学習を指導するDiff-Instructというフレームワークを提案する。
Diff-Instructは、最先端の単一ステップ拡散モデルであることを示す。
GANモデルの精製実験により、Diff-InstructはGANモデルの事前訓練されたジェネレータを一貫して改善できることが示されている。
論文 参考訳(メタデータ) (2023-05-29T04:22:57Z) - Private Gradient Estimation is Useful for Generative Modeling [25.777591229903596]
そこで本研究では,サンプルをハミルトン力学で生成し,よく訓練されたネットワークから推定したプライベートデータセットの勾配を推定する手法を提案する。
我々のモデルは256x256の解像度でデータを生成することができる。
論文 参考訳(メタデータ) (2023-05-18T02:51:17Z) - Extracting Training Data from Diffusion Models [77.11719063152027]
拡散モデルはトレーニングデータから個々の画像を記憶し,生成時に出力することを示す。
生成とフィルタのパイプラインを用いて、最先端のモデルから数千以上のトレーニング例を抽出する。
さまざまな設定で何百もの拡散モデルをトレーニングし、モデリングとデータ決定の違いがプライバシに与える影響を分析する。
論文 参考訳(メタデータ) (2023-01-30T18:53:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。