論文の概要: HybriMoE: Hybrid CPU-GPU Scheduling and Cache Management for Efficient MoE Inference
- arxiv url: http://arxiv.org/abs/2504.05897v1
- Date: Tue, 08 Apr 2025 10:47:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:28:24.740481
- Title: HybriMoE: Hybrid CPU-GPU Scheduling and Cache Management for Efficient MoE Inference
- Title(参考訳): HybriMoE: 効率的なMoE推論のためのハイブリッドCPU-GPUスケジューリングとキャッシュ管理
- Authors: Shuzhang Zhong, Yanfan Sun, Ling Liang, Runsheng Wang, Ru Huang, Meng Li,
- Abstract要約: HybriMoEは、CPU-GPUスケジューリングとキャッシュ管理システムによってリソース利用を改善するハイブリッドCPU-GPU推論フレームワークである。
我々は、kTransformersフレームワーク上にHybriMoEを実装し、3つの広く使われているMoEベースのLLM上で評価する。
- 参考スコア(独自算出の注目度): 5.015541720729724
- License:
- Abstract: The Mixture of Experts (MoE) architecture has demonstrated significant advantages as it enables to increase the model capacity without a proportional increase in computation. However, the large MoE model size still introduces substantial memory demands, which usually requires expert offloading on resource-constrained platforms and incurs significant overhead. Hybrid CPU-GPU inference has been proposed to leverage CPU computation to reduce expert loading overhead but faces major challenges: on one hand, the expert activation patterns of MoE models are highly unstable, rendering the fixed mapping strategies in existing works inefficient; on the other hand, the hybrid CPU-GPU schedule for MoE is inherently complex due to the diverse expert sizes, structures, uneven workload distribution, etc. To address these challenges, in this paper, we propose HybriMoE, a hybrid CPU-GPU inference framework that improves resource utilization through a novel CPU-GPU scheduling and cache management system. HybriMoE introduces (i) a dynamic intra-layer scheduling strategy to balance workloads across CPU and GPU, (ii) an impact-driven inter-layer prefetching algorithm, and (iii) a score-based caching algorithm to mitigate expert activation instability. We implement HybriMoE on top of the kTransformers framework and evaluate it on three widely used MoE-based LLMs. Experimental results demonstrate that HybriMoE achieves an average speedup of 1.33$\times$ in the prefill stage and 1.70$\times$ in the decode stage compared to state-of-the-art hybrid MoE inference framework. Our code is available at: https://github.com/PKU-SEC-Lab/HybriMoE.
- Abstract(参考訳): エキスパートの混合(MoE)アーキテクチャは、計算の比例的な増加を伴わずにモデルキャパシティを向上できるので、大きな利点を示してきた。
しかし、大きなMoEモデルのサイズは依然としてかなりのメモリ要求をもたらしており、通常はリソース制約のあるプラットフォームに専門家のオフロードを必要とし、かなりのオーバーヘッドを発生させる。
一方、MoEモデルのエキスパートアクティベーションパターンは極めて不安定であり、既存の作業で固定マッピング戦略を非効率にレンダリングする。一方、MoEのハイブリッドCPU-GPUスケジュールは、さまざまな専門家サイズ、構造、不均一なワークロード分布などのために本質的に複雑である。
本稿では,新しいCPU-GPUスケジューリングとキャッシュ管理システムを通じて資源利用を改善するハイブリッドCPU-GPU推論フレームワークであるHybriMoEを提案する。
HybriMoEが紹介
i) CPUとGPU間でワークロードのバランスをとるための動的層内スケジューリング戦略。
(II)衝撃駆動層間プレフェッチアルゴリズム、及び
三 専門家のアクティベーション不安定を緩和するためのスコアベースのキャッシュアルゴリズム。
我々は、kTransformersフレームワーク上にHybriMoEを実装し、3つの広く使われているMoEベースのLLM上で評価する。
実験の結果,HybriMoEはプレフィル段階で平均1.33$\times$,デコード段階では1.70$\times$を達成した。
私たちのコードは、https://github.com/PKU-SEC-Lab/HybriMoE.comで利用可能です。
関連論文リスト
- fMoE: Fine-Grained Expert Offloading for Large Mixture-of-Experts Serving [9.956997242640728]
fMoEは、MoEサービスのためのきめ細かい専門家のオフロードシステムである。
我々はfMoEが推論遅延を47%削減し、最先端ソリューションよりも専門家のヒット率を36%向上することを示した。
論文 参考訳(メタデータ) (2025-02-07T22:51:17Z) - MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
従来の軽量モデルの研究は、主にCNNとTransformerベースの設計に重点を置いてきた。
効率と性能のバランスをとるMobileMambaフレームワークを提案する。
MobileMambaはTop-1で83.6%を達成し、既存の最先端の手法を上回っている。
論文 参考訳(メタデータ) (2024-11-24T18:01:05Z) - MoE-Lightning: High-Throughput MoE Inference on Memory-constrained GPUs [55.95879347182669]
MoEアーキテクチャは、推論コストの比例的な増加なしにモデルキャパシティを向上できることで有名である。
MoE-LightningはCPU-GPU-I/OパイプラインスケジュールであるCGOPipeを導入し、ページ重み付けにより高いリソース利用を実現する。
MoE-Lightningは、単一のT4 GPU(16GB)上でMixtral 8x7Bの最先端オフロード可能なLLM推論システムよりも最大10.3倍高いスループットを実現することができる
論文 参考訳(メタデータ) (2024-11-18T01:06:12Z) - HOBBIT: A Mixed Precision Expert Offloading System for Fast MoE Inference [54.40808356999408]
フレキシブルで効率的なMoE推論を実現するための混合精度専門家オフロードシステムHOBBITを提案する。
キーとなる洞察は、重要でないキャッシュミスの専門家を低い精度で動的に置き換えることで、専門家のロード遅延を大幅に削減できるということです。
HOBBITは、最先端のMoEオフロードシステムと比較して、デコードで最大9.93倍のスピードアップを達成する。
論文 参考訳(メタデータ) (2024-11-03T04:25:46Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
本稿では,既存の並列処理方式を超越したMoE用パイプラインスケジューラであるEPS-MoEを紹介する。
その結果,既存の並列推論手法と比較して,プリフィルスループットは52.4%向上した。
論文 参考訳(メタデータ) (2024-10-16T05:17:49Z) - Flash-LLM: Enabling Cost-Effective and Highly-Efficient Large Generative
Model Inference with Unstructured Sparsity [12.663030430488922]
高速コア上での低コストかつ高効率な大規模生成モデル推論を実現するためのFlash-LLMを提案する。
SpMMカーネルレベルでは、Flash-LLMは最先端のライブラリであるSputnikとSparTAをそれぞれ平均2.9倍、1.5倍で上回っている。
論文 参考訳(メタデータ) (2023-09-19T03:20:02Z) - Pre-gated MoE: An Algorithm-System Co-Design for Fast and Scalable Mixture-of-Expert Inference [23.207326766883405]
Mixture-of-Experts (MoE)は、計算要求を比例的にスケールアップすることなく、モデルサイズをスケールすることができる。
プレゲートMOEは、スパース専門家活性化の動的性質を緩和する新しいプレゲート機能を用いている。
我々は、Pre-gated MoEが、同じレベルのモデル品質を維持しながら、パフォーマンスを改善し、GPUメモリ消費を減らすことを実証した。
論文 参考訳(メタデータ) (2023-08-23T11:25:37Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - Edge-MoE: Memory-Efficient Multi-Task Vision Transformer Architecture
with Task-level Sparsity via Mixture-of-Experts [60.1586169973792]
M$3$ViTは、Mix-of-experts (MoE)を導入した最新のマルチタスクViTモデルである。
MoEは精度の向上と80%以上の削減計算を実現しているが、FPGAに効率的なデプロイを行う上での課題は残されている。
Edge-MoEと呼ばれる私たちの研究は、アーキテクチャの革新の集合を伴って、マルチタスクのViTのための最初のエンドツーエンドFPGAアクセラレータを導入するという課題を解決します。
論文 参考訳(メタデータ) (2023-05-30T02:24:03Z) - Towards MoE Deployment: Mitigating Inefficiencies in Mixture-of-Expert
(MoE) Inference [7.743308058511418]
言語モデリング(LM)と機械翻訳(MT)という2つのMoEワークロードの特徴を提供する。
本研究では,(1)動的ゲーティング,(2)エキスパートバッファリング,(3)エキスパートロードバランシングの3つの最適化手法を提案する。
論文 参考訳(メタデータ) (2023-03-10T19:30:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。