論文の概要: Pre-gated MoE: An Algorithm-System Co-Design for Fast and Scalable Mixture-of-Expert Inference
- arxiv url: http://arxiv.org/abs/2308.12066v3
- Date: Sat, 27 Apr 2024 09:11:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 01:04:37.879729
- Title: Pre-gated MoE: An Algorithm-System Co-Design for Fast and Scalable Mixture-of-Expert Inference
- Title(参考訳): Pre-gated MoE: 高速かつスケーラブルなミックス・オブ・エキスパート推論のためのアルゴリズム・システム共設計
- Authors: Ranggi Hwang, Jianyu Wei, Shijie Cao, Changho Hwang, Xiaohu Tang, Ting Cao, Mao Yang,
- Abstract要約: Mixture-of-Experts (MoE)は、計算要求を比例的にスケールアップすることなく、モデルサイズをスケールすることができる。
プレゲートMOEは、スパース専門家活性化の動的性質を緩和する新しいプレゲート機能を用いている。
我々は、Pre-gated MoEが、同じレベルのモデル品質を維持しながら、パフォーマンスを改善し、GPUメモリ消費を減らすことを実証した。
- 参考スコア(独自算出の注目度): 23.207326766883405
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) based on transformers have made significant strides in recent years, the success of which is driven by scaling up their model size. Despite their high algorithmic performance, the computational and memory requirements of LLMs present unprecedented challenges. To tackle the high compute requirements of LLMs, the Mixture-of-Experts (MoE) architecture was introduced which is able to scale its model size without proportionally scaling up its computational requirements. Unfortunately, MoE's high memory demands and dynamic activation of sparse experts restrict its applicability to real-world problems. Previous solutions that offload MoE's memory-hungry expert parameters to CPU memory fall short because the latency to migrate activated experts from CPU to GPU incurs high performance overhead. Our proposed Pre-gated MoE system effectively tackles the compute and memory challenges of conventional MoE architectures using our algorithm-system co-design. Pre-gated MoE employs our novel pre-gating function which alleviates the dynamic nature of sparse expert activation, allowing our proposed system to address the large memory footprint of MoEs while also achieving high performance. We demonstrate that Pre-gated MoE is able to improve performance, reduce GPU memory consumption, while also maintaining the same level of model quality. These features allow our Pre-gated MoE system to cost-effectively deploy large-scale LLMs using just a single GPU with high performance.
- Abstract(参考訳): 近年,トランスフォーマーをベースとした大規模言語モデル (LLM) が大きな進歩を遂げている。
高いアルゴリズム性能にもかかわらず、LLMの計算およびメモリ要求は前例のない課題を呈している。
LLMの高い計算要求に対応するため、Mixture-of-Experts (MoE)アーキテクチャが導入された。
残念ながら、MoEの高メモリ要求とスパース専門家の動的アクティベーションは、現実世界の問題への適用性を制限している。
MoEのメモリ不足の専門家パラメータをCPUメモリにオフロードする以前のソリューションは、アクティベートされた専門家をCPUからGPUに移行させるレイテンシがパフォーマンス上のオーバーヘッドを発生させるため、不足していた。
提案するPre-gated MoEシステムは,従来のMoEアーキテクチャの計算とメモリの課題に対して,アルゴリズム-システム共設計を用いて効果的に対処する。
プレゲートMOEは,スパースエキスパートアクティベーションの動的特性を緩和し,MoEの大規模なメモリフットプリントに対処し,高い性能を実現する。
我々は、Pre-gated MoEが、同じレベルのモデル品質を維持しながら、パフォーマンスを改善し、GPUメモリ消費を減らすことを実証した。
これらの機能により、当社のPre-gated MoEシステムは、高パフォーマンスの1つのGPUを使用して、大規模LLMをコスト効率よくデプロイできるようになりました。
関連論文リスト
- Ultra-Sparse Memory Network [8.927205198458994]
この研究はUltraMemを導入し、これらの制限に対処するために大規模な超スパースメモリ層を組み込んだ。
提案手法は,与えられた計算予算内で,最先端の推論速度とモデル性能を実現する。
論文 参考訳(メタデータ) (2024-11-19T09:24:34Z) - MoE-Lightning: High-Throughput MoE Inference on Memory-constrained GPUs [55.95879347182669]
MoEアーキテクチャは、推論コストの比例的な増加なしにモデルキャパシティを向上できることで有名である。
MoE-LightningはCPU-GPU-I/OパイプラインスケジュールであるCGOPipeを導入し、ページ重み付けにより高いリソース利用を実現する。
MoE-Lightningは、単一のT4 GPU(16GB)上でMixtral 8x7Bの最先端オフロード可能なLLM推論システムよりも最大10.3倍高いスループットを実現することができる
論文 参考訳(メタデータ) (2024-11-18T01:06:12Z) - HOBBIT: A Mixed Precision Expert Offloading System for Fast MoE Inference [54.40808356999408]
フレキシブルで効率的なMoE推論を実現するための混合精度専門家オフロードシステムHOBBITを提案する。
キーとなる洞察は、重要でないキャッシュミスの専門家を低い精度で動的に置き換えることで、専門家のロード遅延を大幅に削減できるということです。
HOBBITは、最先端のMoEオフロードシステムと比較して、デコードで最大9.93倍のスピードアップを達成する。
論文 参考訳(メタデータ) (2024-11-03T04:25:46Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
本稿では、事前学習された高密度LCMをより小さなMoEモデルに変換する新しいフレームワークRead-MEを提案する。
当社のアプローチでは,専門家の抽出にアクティベーション空間を用いる。
Read-MEは、同様のスケールの他の人気のあるオープンソース高密度モデルよりも優れています。
論文 参考訳(メタデータ) (2024-10-24T19:48:51Z) - Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - OPIMA: Optical Processing-In-Memory for Convolutional Neural Network Acceleration [5.0389804644646174]
我々は,処理インメモリ(PIM)ベースの機械学習アクセラレータであるOPIMAを紹介する。
PIMは、内部データ移動のボトルネックのため、高いスループットとエネルギー効率を達成するのに苦労している。
我々は,OPIMAのスループットが2.98倍,エネルギー効率が137倍であることを示す。
論文 参考訳(メタデータ) (2024-07-11T06:12:04Z) - Not All Experts are Equal: Efficient Expert Pruning and Skipping for Mixture-of-Experts Large Language Models [90.14693869269519]
MoE LLMはより少ないパラメータで高いパフォーマンスを実現することができるが、パラメータサイズが大きいためデプロイは困難である。
本稿では主に,プラグ・アンド・プレイ・エキスパートレベルのスペーシフィケーション技術を導入することで,MoE LLMの展開効率を向上させることを目的としている。
論文 参考訳(メタデータ) (2024-02-22T18:56:07Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
我々は、巨大な未使用のコンシューマレベルのGPUをアンロックする分散システムを構想する。
このシステムは、CPUとGPUメモリの制限、ネットワーク帯域幅の低さ、ピアとデバイスの多様性など、重要な課題に直面している。
論文 参考訳(メタデータ) (2023-09-03T13:27:56Z) - EdgeMoE: Fast On-Device Inference of MoE-based Large Language Models [3.597163516372061]
EdgeMoEは、Mix-of-expert (MoE) LLM用に設計されたデバイス上の推論エンジンである。
ストレージ階層間でモデルを戦略的に分割することで、メモリと計算の効率を両立させる。
競合するベースラインソリューションと比較してメモリ節約とパフォーマンスが大幅に向上する。
論文 参考訳(メタデータ) (2023-08-28T06:56:08Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
大規模言語モデル(LLM)は、様々な言語タスクで最先端のパフォーマンスを達成しているが、実用的なデプロイメントには課題がある。
メモリ消費を削減し,LLMの推論を高速化する,効率的な重みのみの量子化法を提案する。
我々は,OPT-175Bや内部MoEモデルのような大規模オープンソースモデルに対するアプローチを評価し,スループットを最大3.65倍に向上しながら,最小限の精度の損失を示す。
論文 参考訳(メタデータ) (2023-08-16T23:57:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。