Temporal Alignment-Free Video Matching for Few-shot Action Recognition
- URL: http://arxiv.org/abs/2504.05956v1
- Date: Tue, 08 Apr 2025 12:11:11 GMT
- Title: Temporal Alignment-Free Video Matching for Few-shot Action Recognition
- Authors: SuBeen Lee, WonJun Moon, Hyun Seok Seong, Jae-Pil Heo,
- Abstract summary: We introduce a novel TEmporal Alignment-free Matching approach, which eliminates the need for temporal units in action representation and brute-force alignment during matching.<n>Specifically, TEAM represents each video with a fixed set of pattern tokens that capture globally discrimi clues within the video instance regardless of action length or speed.<n>We propose an adaptation process that identifies and removes common information across classes, establishing clear boundaries even between novel categories.
- Score: 20.79048009076496
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Few-Shot Action Recognition (FSAR) aims to train a model with only a few labeled video instances. A key challenge in FSAR is handling divergent narrative trajectories for precise video matching. While the frame- and tuple-level alignment approaches have been promising, their methods heavily rely on pre-defined and length-dependent alignment units (e.g., frames or tuples), which limits flexibility for actions of varying lengths and speeds. In this work, we introduce a novel TEmporal Alignment-free Matching (TEAM) approach, which eliminates the need for temporal units in action representation and brute-force alignment during matching. Specifically, TEAM represents each video with a fixed set of pattern tokens that capture globally discriminative clues within the video instance regardless of action length or speed, ensuring its flexibility. Furthermore, TEAM is inherently efficient, using token-wise comparisons to measure similarity between videos, unlike existing methods that rely on pairwise comparisons for temporal alignment. Additionally, we propose an adaptation process that identifies and removes common information across classes, establishing clear boundaries even between novel categories. Extensive experiments demonstrate the effectiveness of TEAM. Codes are available at github.com/leesb7426/TEAM.
Related papers
- Self-Supervised Contrastive Learning for Videos using Differentiable Local Alignment [3.2873782624127834]
We present a self-supervised method for representation learning based on aligning temporal video sequences.<n>We introduce the novel Local-Alignment Contrastive (LAC) loss, which combines a differentiable local alignment loss to capture local temporal dependencies.<n>We show that our learned representations outperform existing state-of-the-art approaches on action recognition tasks.
arXiv Detail & Related papers (2024-09-06T20:32:53Z) - FinePseudo: Improving Pseudo-Labelling through Temporal-Alignablity for Semi-Supervised Fine-Grained Action Recognition [57.17966905865054]
Real-life applications of action recognition often require a fine-grained understanding of subtle movements.
Existing semi-supervised action recognition has mainly focused on coarse-grained action recognition.
We propose an Alignability-Verification-based Metric learning technique to effectively discriminate between fine-grained action pairs.
arXiv Detail & Related papers (2024-09-02T20:08:06Z) - FMI-TAL: Few-shot Multiple Instances Temporal Action Localization by Probability Distribution Learning and Interval Cluster Refinement [2.261014973523156]
We propose a novel solution involving a spatial-channel relation transformer with probability learning and cluster refinement.
This method can accurately identify the start and end boundaries of actions in the query video.
Our model achieves competitive performance through meticulous experimentation utilizing the benchmark datasets ActivityNet1.3 and THUMOS14.
arXiv Detail & Related papers (2024-08-25T08:17:25Z) - Transform-Equivariant Consistency Learning for Temporal Sentence
Grounding [66.10949751429781]
We introduce a novel Equivariant Consistency Regulation Learning framework to learn more discriminative representations for each video.
Our motivation comes from that the temporal boundary of the query-guided activity should be consistently predicted.
In particular, we devise a self-supervised consistency loss module to enhance the completeness and smoothness of the augmented video.
arXiv Detail & Related papers (2023-05-06T19:29:28Z) - HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot
Action Recognition [51.2715005161475]
We propose a novel Hybrid Relation guided temporal Set Matching approach for few-shot action recognition.
The core idea of HyRSM++ is to integrate all videos within the task to learn discriminative representations.
We show that our method achieves state-of-the-art performance under various few-shot settings.
arXiv Detail & Related papers (2023-01-09T13:32:50Z) - Hybrid Relation Guided Set Matching for Few-shot Action Recognition [51.3308583226322]
We propose a novel Hybrid Relation guided Set Matching (HyRSM) approach that incorporates two key components.
The purpose of the hybrid relation module is to learn task-specific embeddings by fully exploiting associated relations within and cross videos in an episode.
We evaluate HyRSM on six challenging benchmarks, and the experimental results show its superiority over the state-of-the-art methods by a convincing margin.
arXiv Detail & Related papers (2022-04-28T11:43:41Z) - Fine-grained Temporal Contrastive Learning for Weakly-supervised
Temporal Action Localization [87.47977407022492]
This paper argues that learning by contextually comparing sequence-to-sequence distinctions offers an essential inductive bias in weakly-supervised action localization.
Under a differentiable dynamic programming formulation, two complementary contrastive objectives are designed, including Fine-grained Sequence Distance (FSD) contrasting and Longest Common Subsequence (LCS) contrasting.
Our method achieves state-of-the-art performance on two popular benchmarks.
arXiv Detail & Related papers (2022-03-31T05:13:50Z) - Semi-Supervised Action Recognition with Temporal Contrastive Learning [50.08957096801457]
We learn a two-pathway temporal contrastive model using unlabeled videos at two different speeds.
We considerably outperform video extensions of sophisticated state-of-the-art semi-supervised image recognition methods.
arXiv Detail & Related papers (2021-02-04T17:28:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.