Mitigating decoherence in molecular spin qudits
- URL: http://arxiv.org/abs/2504.06057v1
- Date: Tue, 08 Apr 2025 14:00:52 GMT
- Title: Mitigating decoherence in molecular spin qudits
- Authors: Leonardo Ratini, Giacomo Sansone, Elena Garlatti, Francesco Petiziol, Stefano Carretta, Paolo Santini,
- Abstract summary: We analyze the characteristics of pure dephasing in molecular qudits under spin-echo sequences.<n>First, we demonstrate a necessary and sufficient condition to prevent the decay of coherence with time.<n>We then advance a proposal for optimized nanomagnets, identifying key ingredients for engineering robust qudits for quantum technologies.
- Score: 0.758677526101969
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular nanomagnets are quantum spin systems potentially serving as qudits for future quantum technologies thanks to their many accessible low-energy states. At low temperatures, the primary source of error in these systems is pure dephasing, caused by their interactions with the bath of surrounding nuclear spins degrees of freedom. Most importantly, as the system's dimensionality grows going from qubits to qudits, the control and mitigation of decoherence becomes more challenging. Here we analyze the characteristics of pure dephasing in molecular qudits under spin-echo sequences. We use a realistic description of their interaction with the bath, whose non-Markovian dynamics is accurately computed by the cluster correlation expansion technique. First, we demonstrate a necessary and sufficient condition to prevent the decay of coherence with time, also introducing a parameter to quantify the deviation from such ideal condition. We illustrate this with two paradigmatic systems: a single giant spin and a composite antiferromagnetic spin system. We then advance a proposal for optimized nanomagnets, identifying key ingredients for engineering robust qudits for quantum technologies.
Related papers
- Low temperature decoherence dynamics in molecular spin systems using the Lindblad master equation [0.0]
At low temperatures, irreversible loss occurs due to ensemble dynamics facilitated by electronic-nuclear spin interactions.
We develop a combined open quantum systems and electronic structure theory capable of predicting trends in relaxation rates in molecular spin ensembles.
Our theory provides a framework to describe irreversible relaxation effects in molecular spin systems with applications in quantum information science, quantum sensing, molecular spintronics, and other spin systems dominated by spin-spin relaxation.
arXiv Detail & Related papers (2024-08-16T14:23:03Z) - Spin/Phonon Dynamics in Single Molecular Magnets: II. spin/phonon entanglemen [3.100390591580898]
We introduce a new quantum embedding method to explore spin-phonon interactions in molecular magnets.
By precisely factorizing the entire system into "system" and "bath" sub-ensembles, our approach simplifies a previously intractable problem.
arXiv Detail & Related papers (2024-07-10T17:03:35Z) - Finding the Dynamics of an Integrable Quantum Many-Body System via
Machine Learning [0.0]
We study the dynamics of the Gaudin magnet ("central-spin model") using machine-learning methods.
Motivated in part by this intuition, we use a neural-network representation for each variational eigenstate of the model Hamiltonian.
Having an efficient description of this susceptibility opens the door to improved characterization and quantum control procedures for qubits interacting with an environment of quantum two-level systems.
arXiv Detail & Related papers (2023-07-06T21:49:01Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Finite-size criticality in fully connected spin models on
superconducting quantum hardware [0.0]
We exploit the new resources offered by quantum algorithms to detect the quantum critical behaviour of fully connected spin$-1/2$ models.
We propose a method based on variational algorithms run on superconducting transmon qubits.
arXiv Detail & Related papers (2022-08-04T16:00:34Z) - Counteracting dephasing in Molecular Nanomagnets by optimized qudit
encodings [60.1389381016626]
Molecular Nanomagnets may enable the implementation of qudit-based quantum error-correction codes.
A microscopic understanding of the errors corrupting the quantum information encoded in a molecular qudit is essential.
arXiv Detail & Related papers (2021-03-16T19:21:42Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Basis-independent system-environment coherence is necessary to detect
magnetic field direction in an avian-inspired quantum magnetic sensor [77.34726150561087]
We consider an avian-inspired quantum magnetic sensor composed of two radicals with a third "scavenger" radical under the influence of a collisional environment.
We show that basis-independent coherence, in which the initial system-environment state is non-maximally mixed, is necessary for optimal performance.
arXiv Detail & Related papers (2020-11-30T17:19:17Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.