論文の概要: Towards Varroa destructor mite detection using a narrow spectra illumination
- arxiv url: http://arxiv.org/abs/2504.06099v1
- Date: Tue, 08 Apr 2025 14:41:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:31:52.370593
- Title: Towards Varroa destructor mite detection using a narrow spectra illumination
- Title(参考訳): 狭いスペクトル照明を用いたバラアデストラクタマイト検出に向けて
- Authors: Samuel Bielik, Simon Bilik,
- Abstract要約: 本稿では,ハチの捕食監視装置の開発と修正に焦点をあて,ハイパスペクトル画像を用いたバローアデストラクタ検出について述べる。
主な目的は、ミツバチとミツバチのデータセットを収集し、ミツバチとミツバチを検出できるコンピュータビジョンモデルを提案することである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper focuses on the development and modification of a beehive monitoring device and Varroa destructor detection on the bees with the help of hyperspectral imagery while utilizing a U-net, semantic segmentation architecture, and conventional computer vision methods. The main objectives were to collect a dataset of bees and mites, and propose the computer vision model which can achieve the detection between bees and mites.
- Abstract(参考訳): 本稿では、U-net、セマンティックセグメンテーションアーキテクチャ、および従来のコンピュータビジョン手法を利用して、ハチの捕食監視装置の開発と修正と、ハイパースペクトル画像によるバロアデストラクタ検出に焦点を当てた。
主な目的は、ミツバチとミツバチのデータセットを収集し、ミツバチとミツバチを検出できるコンピュータビジョンモデルを提案することである。
関連論文リスト
- Varroa destructor detection on honey bees using hyperspectral imagery [0.0]
本稿では,ミツバチApis melliferaの体に寄生する寄生性ミツバチデストラクターダニを検出する方法を紹介する。
この手法は、非教師付き(K-means++)および最近開発された寄生的識別のための教師付き(KF-PLS)手法を探索する。
本研究は、カスタムバンドマルチスペクトルカメラの出現を踏まえ、ハチマイト分離に必要な特定の波長を特定するための戦略を概説する。
論文 参考訳(メタデータ) (2024-03-21T12:40:41Z) - Weakly supervised marine animal detection from remote sensing images
using vector-quantized variational autoencoder [4.812718493682454]
本稿では, 海洋環境における航空画像からの弱教師付き動物検出のための再構成に基づくアプローチについて検討する。
異常検出フレームワークは、入力空間上で直接メトリクスを計算し、解釈可能性と異常なローカライゼーションを高める。
我々のフレームワークは、異常の解釈性と局所化を改善し、海洋生態系のモニタリングに有用な洞察を提供する。
論文 参考訳(メタデータ) (2023-07-13T12:26:27Z) - ODAM: Gradient-based instance-specific visual explanations for object
detection [51.476702316759635]
勾配重み付き物体検出器活性化マップ(ODAM)
ODAMは、各予測属性に対する検出器の決定に対する領域の影響を示す熱マップを生成する。
そこで本研究では,重複検出対象を識別するために,各予測に対してモデルの説明情報を考慮したOdam-NMSを提案する。
論文 参考訳(メタデータ) (2023-04-13T09:20:26Z) - BEVFormer v2: Adapting Modern Image Backbones to Bird's-Eye-View
Recognition via Perspective Supervision [101.36648828734646]
本稿では、視線を監督する新しい鳥眼ビュー(BEV)検出器について述べる。
提案手法は,従来および現代の画像バックボーンの幅広いスペクトルを用いて検証し,大規模なnuScenesデータセット上で新たなSoTA結果を得る。
論文 参考訳(メタデータ) (2022-11-18T18:59:48Z) - Self-Calibrating Anomaly and Change Detection for Autonomous Inspection
Robots [0.07366405857677225]
視覚異常または変化検出アルゴリズムは、参照画像やデータセットとは異なる画像の領域を特定する。
本研究では,事前の未知環境における異常や変化を検出するための総合的なディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-26T09:52:12Z) - Peripheral Vision Transformer [52.55309200601883]
我々は生物学的にインスパイアされたアプローチを採用し、視覚認識のためのディープニューラルネットワークの周辺視覚をモデル化する。
本稿では,マルチヘッド自己アテンション層に周辺位置エンコーディングを組み込むことにより,トレーニングデータから視覚領域を様々な周辺領域に分割することをネットワークが学べるようにすることを提案する。
大規模画像Netデータセット上でPerViTと呼ばれる提案したネットワークを評価し,マシン知覚モデルの内部動作を体系的に検討した。
論文 参考訳(メタデータ) (2022-06-14T12:47:47Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
本研究は、物体検出のために異なるように見える赤外線と可視画像の融合の問題に対処する。
従来のアプローチでは、2つのモダリティの根底にある共通点を発見し、反復最適化またはディープネットワークによって共通空間に融合する。
本稿では、融合と検出の連立問題に対する二段階最適化の定式化を提案し、その後、核融合と一般的に使用される検出ネットワークのためのターゲット認識デュアル逆学習(TarDAL)ネットワークに展開する。
論文 参考訳(メタデータ) (2022-03-30T11:44:56Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
近年のディープラーニングの進歩は、様々なコンピュータビジョンアプリケーションのための正確で効率的なモデルの開発につながっている。
高度に正確なモデルを学ぶには、大量の注釈付きイメージを持つデータセットの可用性に依存する。
このため、ラベルスカースデータセットに視覚的に異なる画像がある場合、モデルの性能は大幅に低下する。
論文 参考訳(メタデータ) (2021-05-27T23:34:06Z) - ODDObjects: A Framework for Multiclass Unsupervised Anomaly Detection on
Masked Objects [0.0]
ODDObjectsは、COCOスタイルのデータセットでトレーニングされた教師なしオートエンコーダを使用して、さまざまなカテゴリの異常を検出するように設計されている。
このフレームワークはオートエンコーダによる異常検出に関する以前の作業を拡張し、オブジェクト認識データセットでトレーニングされた最先端のモデルを比較する。
論文 参考訳(メタデータ) (2021-04-26T01:13:28Z) - UAV-AdNet: Unsupervised Anomaly Detection using Deep Neural Networks for
Aerial Surveillance [20.318367304051176]
本稿では,重要なインフラの監視のために,ディープニューラルネットワークを用いた全体的異常検出システムを提案する。
まず,鳥視画像中の物体の空間配置を明示的に表現する手法を提案する。
次に、教師なし異常検出(UAV-AdNet)のためのディープニューラルネットワークアーキテクチャを提案する。
文献研究とは異なり、GPSと画像データを組み合わせて異常な観察を予測する。
論文 参考訳(メタデータ) (2020-11-05T14:26:29Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。