論文の概要: Varroa destructor detection on honey bees using hyperspectral imagery
- arxiv url: http://arxiv.org/abs/2403.14359v1
- Date: Thu, 21 Mar 2024 12:40:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 14:18:45.515985
- Title: Varroa destructor detection on honey bees using hyperspectral imagery
- Title(参考訳): ハイパースペクトル画像を用いたミツバチのバロアデストラクタ検出
- Authors: Zina-Sabrina Duma, Tomas Zemcik, Simon Bilik, Tuomas Sihvonen, Peter Honec, Satu-Pia Reinikainen, Karel Horak,
- Abstract要約: 本稿では,ミツバチApis melliferaの体に寄生する寄生性ミツバチデストラクターダニを検出する方法を紹介する。
この手法は、非教師付き(K-means++)および最近開発された寄生的識別のための教師付き(KF-PLS)手法を探索する。
本研究は、カスタムバンドマルチスペクトルカメラの出現を踏まえ、ハチマイト分離に必要な特定の波長を特定するための戦略を概説する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral (HS) imagery in agriculture is becoming increasingly common. These images have the advantage of higher spectral resolution. Advanced spectral processing techniques are required to unlock the information potential in these HS images. The present paper introduces a method rooted in multivariate statistics designed to detect parasitic Varroa destructor mites on the body of western honey bee Apis mellifera, enabling easier and continuous monitoring of the bee hives. The methodology explores unsupervised (K-means++) and recently developed supervised (Kernel Flows - Partial Least-Squares, KF-PLS) methods for parasitic identification. Additionally, in light of the emergence of custom-band multispectral cameras, the present research outlines a strategy for identifying the specific wavelengths necessary for effective bee-mite separation, suitable for implementation in a custom-band camera. Illustrated with a real-case dataset, our findings demonstrate that as few as four spectral bands are sufficient for accurate parasite identification.
- Abstract(参考訳): 農業におけるハイパースペクトル(HS)画像はますます一般的になりつつある。
これらの画像は高いスペクトル分解能の利点がある。
これらのHS画像の情報ポテンシャルを解き放つには、高度なスペクトル処理技術が必要である。
本稿では,ハチミツバチの体に寄生する寄生性ハチミツバチの寄生性ハチミツバチの寄生性ハチミツバチを検出できるように,多変量統計に根ざした手法を提案する。
この手法は非教師付き(K-means++)と最近開発された寄生的識別のための教師付き(Kernel Flows - partial Least-Squares, KF-PLS)手法を探索する。
さらに, カスタムバンドマルチスペクトルカメラの出現を踏まえ, 本研究は, カスタムバンドカメラの実装に適した有効ビーマイト分離に必要な特定の波長を特定するための戦略を概説する。
実ケースデータセットを用いて,4つのスペクトル帯が正確な寄生虫の同定に十分であることを示す。
関連論文リスト
- Self-supervised Fusarium Head Blight Detection with Hyperspectral Image and Feature Mining [6.252899116304227]
フサリウムヘッドブライト(Fusarium Head Blight、FHB)は小麦(ダラムを含む)、大麦、オート麦、その他の小さな穀物、トウモロコシに深刻な菌類病である。
伝統的に、訓練された農学者や測量士は、労働集約的で非現実的でスケールが難しい手動の識別を行う。
ディープラーニングとハイパースペクトルイメージング(HSI)とリモートセンシング(RS)技術の進歩により、ディープラーニング、特にコナールニューラルネットワーク(CNN)が有望なソリューションとして登場してきた。
論文 参考訳(メタデータ) (2024-08-31T09:09:02Z) - Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - Beyond the Visible: Jointly Attending to Spectral and Spatial Dimensions with HSI-Diffusion for the FINCH Spacecraft [2.5057561650768814]
FINCHミッションは、農地の作物の残留物を監視することを目的としている。
ハイパースペクトルイメージングは、スペクトル情報と空間情報の両方をキャプチャする。
ランダムノイズ、ストライプノイズ、デッドピクセルなど、様々な種類のノイズが生じる傾向がある。
論文 参考訳(メタデータ) (2024-06-15T19:34:18Z) - Diffusion Facial Forgery Detection [56.69763252655695]
本稿では,顔に焦点をあてた拡散生成画像を対象とした包括的データセットであるDiFFを紹介する。
人体実験といくつかの代表的な偽造検出手法を用いて,DiFFデータセットの広範な実験を行った。
その結果、人間の観察者と自動検出者の2値検出精度は30%以下であることが判明した。
論文 参考訳(メタデータ) (2024-01-29T03:20:19Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
BMSB(Halyomorpha halys)は、数種の作物を害する世界的重要性の害虫である。
本研究は、BMSB検体を検出する技術として、NIR-HSI(Near Infrared Hyperspectral Imaging)を実験室レベルで予備評価する。
論文 参考訳(メタデータ) (2023-01-19T11:37:20Z) - Comparison of semi-supervised learning methods for High Content
Screening quality control [0.34998703934432673]
高濃度スクリーニング(HCS)は、高スループットで画像から複雑な細胞表現型を定量化する。
このプロセスは、アウト・オブ・フォーカス画像のぼかし、蛍光彩飽和、破片、高レベルのノイズ、予期しない自動蛍光、空のイメージなどの画像収差によって妨げられる。
簡単な半教師付き学習ソリューションを提供するために,画像アノテーションを必要としない深層学習の選択肢を評価する。
論文 参考訳(メタデータ) (2022-08-09T08:14:36Z) - High-Resolution UAV Image Generation for Sorghum Panicle Detection [23.88932181375298]
本稿では,データ拡張のためのGAN(Generative Adversarial Network)からの合成トレーニング画像を用いて,ソルガムパニックの検出とカウントの性能を向上させる手法を提案する。
提案手法は,実際のUAV RGB画像の地上真実データセットを限定した画像から画像への変換GANを用いて,パニックラベルを用いた合成高解像度UAV RGB画像を生成することができる。
論文 参考訳(メタデータ) (2022-05-08T20:26:56Z) - Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in
Frequency Domain [88.7339322596758]
本論文では,空間画像と位相スペクトルを組み合わせ,顔の偽造のアップサンプリング成果をキャプチャするSPSL(Spatial-Phase Shallow Learning)法を提案する。
SPSLは、クロスデータセット評価における最先端性能とマルチクラス分類を実現し、単一データセット評価において同等の結果を得ることができる。
論文 参考訳(メタデータ) (2021-03-02T16:45:08Z) - Data-Driven Discovery of Molecular Photoswitches with Multioutput
Gaussian Processes [51.17758371472664]
フォトウィッチ可能な分子は、光によってアクセスされる2つ以上の異性体である。
本稿では、データセットキュレーションとマルチタスク学習を基盤とした、分子フォトウィッチのためのデータ駆動探索パイプラインを提案する。
提案手法は, 市販フォトウィッチ可能な分子のライブラリーをスクリーニングし, 実験的に検証した。
論文 参考訳(メタデータ) (2020-06-28T20:59:03Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
本稿では,高スペクトル像と多スペクトル像を融合させて高画質な高スペクトル出力を実現する手法を提案する。
提案したスパース融合と再構成は,既存の公開画像の手法と比較して,定量的に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-03-15T23:07:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。