論文の概要: Rethinking the Nested U-Net Approach: Enhancing Biomarker Segmentation with Attention Mechanisms and Multiscale Feature Fusion
- arxiv url: http://arxiv.org/abs/2504.06158v1
- Date: Tue, 08 Apr 2025 15:53:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:28:46.143973
- Title: Rethinking the Nested U-Net Approach: Enhancing Biomarker Segmentation with Attention Mechanisms and Multiscale Feature Fusion
- Title(参考訳): ネストされたU-Netアプローチの再考:注意機構とマルチスケール特徴融合によるバイオマーカーセグメンテーションの強化
- Authors: Saad Wazir, Daeyoung Kim,
- Abstract要約: マルチスケール・フィーチャー・フュージョンとアテンション・メカニズムを通じて、ローカルとグローバルの両方のコンテキストをキャプチャするネストされたUNetアーキテクチャを導入する。
この設計では、エンコーダからの機能統合を改善し、キーチャネルとリージョンを強調し、空間の詳細を復元してセグメンテーション性能を向上させる。
- 参考スコア(独自算出の注目度): 2.0799865428691393
- License:
- Abstract: Identifying biomarkers in medical images is vital for a wide range of biotech applications. However, recent Transformer and CNN based methods often struggle with variations in morphology and staining, which limits their feature extraction capabilities. In medical image segmentation, where data samples are often limited, state-of-the-art (SOTA) methods improve accuracy by using pre-trained encoders, while end-to-end approaches typically fall short due to difficulties in transferring multiscale features effectively between encoders and decoders. To handle these challenges, we introduce a nested UNet architecture that captures both local and global context through Multiscale Feature Fusion and Attention Mechanisms. This design improves feature integration from encoders, highlights key channels and regions, and restores spatial details to enhance segmentation performance. Our method surpasses SOTA approaches, as evidenced by experiments across four datasets and detailed ablation studies. Code: https://github.com/saadwazir/ReN-UNet
- Abstract(参考訳): 医用画像中のバイオマーカーの同定は、幅広いバイオテクノロジー応用に不可欠である。
しかし、最近のTransformerとCNNベースの手法は、しばしば形態や染色のバリエーションに悩まされ、特徴抽出能力を制限している。
データサンプルがしばしば制限される医療画像セグメンテーションでは、最先端のSOTA(State-of-the-art)手法は、事前訓練されたエンコーダを使用することで精度を向上するが、エンド・ツー・エンドのアプローチは、エンコーダとデコーダの間で効果的にマルチスケールの機能を転送することが困難であるため、一般的には不足する。
これらの課題に対処するために,マルチスケールフィーチャーフュージョンとアテンションメカニズムを通じて,ローカルコンテキストとグローバルコンテキストの両方をキャプチャするネストされたUNetアーキテクチャを導入する。
この設計では、エンコーダからの機能統合を改善し、キーチャネルとリージョンを強調し、空間の詳細を復元してセグメンテーション性能を向上させる。
提案手法は,4つのデータセットにわたる実験と詳細なアブレーション研究によって実証されたSOTAアプローチを超越する。
コード:https://github.com/saadwazir/ReN-UNet
関連論文リスト
- AFFSegNet: Adaptive Feature Fusion Segmentation Network for Microtumors and Multi-Organ Segmentation [31.97835089989928]
医用画像のセグメンテーションは、コンピュータビジョンにおいて重要な課題であり、診断、治療計画、疾患モニタリングにおける臨床医を支援する。
本稿では,局所的特徴とグローバルな特徴を効果的に統合し,正確な医用画像分割を実現するトランスフォーマアーキテクチャである適応意味ネットワーク(ASSNet)を提案する。
多臓器、肝腫瘍、膀胱腫瘍の分節を含む様々な医療画像の分節タスクに関するテストは、ATSNetが最先端の結果を達成することを実証している。
論文 参考訳(メタデータ) (2024-09-12T06:25:44Z) - TransDAE: Dual Attention Mechanism in a Hierarchical Transformer for Efficient Medical Image Segmentation [7.013315283888431]
医用画像のセグメンテーションは、正確な疾患診断と効果的な治療戦略の開発に不可欠である。
本稿では,トランスダエ(TransDAE)という,空間的・チャネル的関連性を含む自己認識機構を再定義する手法を紹介する。
注目すべきは、TransDAEがSynapsのマルチオーガナイズデータセット上で、既存の最先端メソッドより優れていることだ。
論文 参考訳(メタデータ) (2024-09-03T16:08:48Z) - BEFUnet: A Hybrid CNN-Transformer Architecture for Precise Medical Image
Segmentation [0.0]
本稿では,医療画像の正確な分割のために,身体情報とエッジ情報の融合を強化するBEFUnetという,革新的なU字型ネットワークを提案する。
BEFUnetは、新しいローカル・クロス・アテンション・フィーチャー(LCAF)融合モジュール、新しいダブル・レベル・フュージョン(DLF)モジュール、デュアルブランチ・エンコーダの3つの主要モジュールから構成されている。
LCAFモジュールは、2つのモダリティの間に空間的に近接する特徴に対して、局所的な相互注意を選択的に行うことにより、エッジとボディの特徴を効率よく融合させる。
論文 参考訳(メタデータ) (2024-02-13T21:03:36Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
フォトリアリスティック・ジェネレータの急速な進歩は、真の画像と操作された画像の相違がますます不明瞭になっている臨界点に達している。
公開されている顔の偽造データセットはいくつかあるが、偽造顔は主にGANベースの合成技術を用いて生成される。
我々は,大規模で多様できめ細かな高忠実度データセットであるGenFaceを提案し,ディープフェイク検出の進展を促進する。
論文 参考訳(メタデータ) (2024-02-03T03:13:50Z) - ParaTransCNN: Parallelized TransCNN Encoder for Medical Image
Segmentation [7.955518153976858]
本稿では,畳み込みニューラルネットワークとトランスフォーマーアーキテクチャを組み合わせた2次元特徴抽出手法を提案する。
特に小臓器では, セグメンテーションの精度が向上した。
論文 参考訳(メタデータ) (2024-01-27T05:58:36Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Focused Decoding Enables 3D Anatomical Detection by Transformers [64.36530874341666]
集束デコーダと呼ばれる3次元解剖学的構造検出のための新しい検出変換器を提案する。
Focused Decoderは、解剖学的領域のアトラスからの情報を活用して、クエリアンカーを同時にデプロイし、クロスアテンションの視野を制限する。
提案手法を利用可能な2つのCTデータセットに対して評価し、フォーカスドデコーダが強力な検出結果を提供するだけでなく、大量の注釈付きデータの必要性を軽減し、注意重みによる結果の例外的で直感的な説明性を示すことを示した。
論文 参考訳(メタデータ) (2022-07-21T22:17:21Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
医用画像セグメンテーションのためのトランスフォーマーベースUNetを提案する。
グローバルな意味情報と局所的な空間的詳細特徴を同時に学習する。
MISSUは従来の最先端手法よりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2022-06-02T07:38:53Z) - TransAttUnet: Multi-level Attention-guided U-Net with Transformer for
Medical Image Segmentation [33.45471457058221]
本稿では,TransAttUnetと呼ばれるトランスフォーマーベースの医用画像セマンティックセマンティック・セマンティック・フレームワークを提案する。
特に,デコーダブロック間の複数スケールのスキップ接続を確立することで,セマンティック・スケールのアップサンプリング機能を集約する。
我々の手法は一貫して最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2021-07-12T09:17:06Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
医用画像のセグメンテーションは医療システムの開発に必須の前提条件である。
様々な医療画像セグメンテーションタスクにおいて、U-Netとして知られるu字型アーキテクチャがデファクトスタンダードとなっている。
医用画像セグメンテーションの強力な代替手段として,トランスフォーマーとU-Netの両方を有効活用するTransUNetを提案する。
論文 参考訳(メタデータ) (2021-02-08T16:10:50Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。