NNN: Next-Generation Neural Networks for Marketing Mix Modeling
- URL: http://arxiv.org/abs/2504.06212v2
- Date: Wed, 09 Apr 2025 22:23:07 GMT
- Title: NNN: Next-Generation Neural Networks for Marketing Mix Modeling
- Authors: Thomas Mulc, Mike Anderson, Paul Cubre, Huikun Zhang, Ivy Liu, Saket Kumar,
- Abstract summary: We present NNN, a Transformer-based neural network approach to Marketing Mix Modeling (MMM)<n>NNN uses rich embeddings to capture both quantitative and qualitative aspects of marketing and organic channels.<n>We show that L1 regularization permits the use of such expressive models in typical data-constrained settings.
- Score: 0.923607423080658
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present NNN, a Transformer-based neural network approach to Marketing Mix Modeling (MMM) designed to address key limitations of traditional methods. Unlike conventional MMMs which rely on scalar inputs and parametric decay functions, NNN uses rich embeddings to capture both quantitative and qualitative aspects of marketing and organic channels (e.g., search queries, ad creatives). This, combined with its attention mechanism, enables NNN to model complex interactions, capture long-term effects, and potentially improve sales attribution accuracy. We show that L1 regularization permits the use of such expressive models in typical data-constrained settings. Evaluating NNN on simulated and real-world data demonstrates its efficacy, particularly through considerable improvement in predictive power. Beyond attribution, NNN provides valuable, complementary insights through model probing, such as evaluating keyword or creative effectiveness, enhancing model interpretability.
Related papers
- Scalable Mechanistic Neural Networks for Differential Equations and Machine Learning [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.<n>We reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.<n>Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - Physical Rule-Guided Convolutional Neural Network [0.0]
Physics-Guided Neural Networks (PGNNs) have emerged to address limitations by integrating scientific principles and real-world knowledge.
This paper proposes a novel Physics-Guided CNN (PGCNN) architecture that incorporates dynamic, trainable, and automated LLM-generated, widely recognized rules integrated into the model as custom layers.
The PGCNN is evaluated on multiple datasets, demonstrating superior performance compared to a baseline CNN model.
arXiv Detail & Related papers (2024-09-03T17:32:35Z) - Bayesian Entropy Neural Networks for Physics-Aware Prediction [14.705526856205454]
We introduce BENN, a framework designed to impose constraints on Bayesian Neural Network (BNN) predictions.
Benn is capable of constraining not only the predicted values but also their derivatives and variances, ensuring a more robust and reliable model output.
Results highlight significant improvements over traditional BNNs and showcase competitive performance relative to contemporary constrained deep learning methods.
arXiv Detail & Related papers (2024-07-01T07:00:44Z) - Coherent Feed Forward Quantum Neural Network [2.1178416840822027]
Quantum machine learning, focusing on quantum neural networks (QNNs), remains a vastly uncharted field of study.
We introduce a bona fide QNN model, which seamlessly aligns with the versatility of a traditional FFNN in terms of its adaptable intermediate layers and nodes.
We test our proposed model on various benchmarking datasets such as the diagnostic breast cancer (Wisconsin) and credit card fraud detection datasets.
arXiv Detail & Related papers (2024-02-01T15:13:26Z) - LM-HT SNN: Enhancing the Performance of SNN to ANN Counterpart through Learnable Multi-hierarchical Threshold Model [42.13762207316681]
Spiking Neural Network (SNN) has garnered widespread academic interest for its intrinsic ability to transmit information in a more energy-efficient manner.
Despite previous efforts to optimize the learning algorithm of SNNs through various methods, SNNs still lag behind ANNs in terms of performance.
We propose a novel LM-HT model, which is an equidistant multi-threshold model that can dynamically regulate the global input current and membrane potential leakage.
arXiv Detail & Related papers (2024-02-01T08:10:39Z) - Neural Additive Models for Location Scale and Shape: A Framework for
Interpretable Neural Regression Beyond the Mean [1.0923877073891446]
Deep neural networks (DNNs) have proven to be highly effective in a variety of tasks.
Despite this success, the inner workings of DNNs are often not transparent.
This lack of interpretability has led to increased research on inherently interpretable neural networks.
arXiv Detail & Related papers (2023-01-27T17:06:13Z) - Posterior Regularized Bayesian Neural Network Incorporating Soft and
Hard Knowledge Constraints [12.050265348673078]
We propose a novel Posterior-Regularized Bayesian Neural Network (PR-BNN) model by incorporating different types of knowledge constraints.
Experiments in simulation and two case studies about aviation landing prediction and solar energy output prediction have shown the knowledge constraints and the performance improvement of the proposed model.
arXiv Detail & Related papers (2022-10-16T18:58:50Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
We focus on a specific method, KENN, a Neural-Symbolic architecture that injects prior logical knowledge into a neural network.
In this paper, we propose an extension of KENN for relational data.
arXiv Detail & Related papers (2022-05-31T13:00:34Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Efficient Probabilistic Logic Reasoning with Graph Neural Networks [63.099999467118245]
Markov Logic Networks (MLNs) can be used to address many knowledge graph problems.
Inference in MLN is computationally intensive, making the industrial-scale application of MLN very difficult.
We propose a graph neural network (GNN) variant, named ExpressGNN, which strikes a nice balance between the representation power and the simplicity of the model.
arXiv Detail & Related papers (2020-01-29T23:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.