論文の概要: PainNet: Statistical Relation Network with Episode-Based Training for Pain Estimation
- arxiv url: http://arxiv.org/abs/2504.06257v1
- Date: Tue, 08 Apr 2025 17:58:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 15:32:44.308606
- Title: PainNet: Statistical Relation Network with Episode-Based Training for Pain Estimation
- Title(参考訳): PainNet: エピソードに基づく痛み推定のための統計的関係ネットワーク
- Authors: Mina Bishay, Graham Page, Mohammad Mavadati,
- Abstract要約: そこで我々は,シーケンスレベルの痛みを推定するための新しい統計関係ネットワークPainNetを紹介した。
PainNetは2つの重要なモジュール、埋め込みとリレーションモジュールを使って、痛みビデオのペアを比較している。
PainNetはエピソードベースのトレーニングスキームを使用してトレーニングされている。
- 参考スコア(独自算出の注目度): 0.6008132390640294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the span in estimating pain from facial expressions, limited works have focused on estimating the sequence-level pain, which is reported by patients and used commonly in clinics. In this paper, we introduce a novel Statistical Relation Network, referred to as PainNet, designed for the estimation of the sequence-level pain. PainNet employs two key modules, the embedding and the relation modules, for comparing pairs of pain videos, and producing relation scores indicating if each pair belongs to the same pain category or not. At the core of the embedding module is a statistical layer mounted on the top of a RNN for extracting compact video-level features. The statistical layer is implemented as part of the deep architecture. Doing so, allows combining multiple training stages used in previous research, into a single end-to-end training stage. PainNet is trained using the episode-based training scheme, which involves comparing a query video with a set of videos representing the different pain categories. Experimental results show the benefit of using the statistical layer and the episode-based training in the proposed model. Furthermore, PainNet outperforms the state-of-the-art results on self-reported pain estimation.
- Abstract(参考訳): 顔の表情から痛みを推定する範囲は限られているが、限られた研究は、患者によって報告され、一般的に診療所で使用される、シーケンスレベルの痛みを推定することに焦点を当てている。
本稿では,シーケンスレベルの痛みを推定するための新しい統計関係ネットワークPainNetを提案する。
PainNetは、埋め込みと関係モジュールという2つの重要なモジュールを使用して、痛みビデオのペアを比較し、それぞれのペアが同じ痛みカテゴリに属しているかどうかを示す関係スコアを生成する。
埋め込みモジュールのコアには、コンパクトなビデオレベルの特徴を抽出するRNNの上部に取り付けられた統計層がある。
統計層は、ディープアーキテクチャの一部として実装されている。
そうすることで、以前の研究で使われた複数のトレーニングステージを、単一のエンドツーエンドのトレーニングステージに組み合わせることができる。
PainNetはエピソードベースのトレーニングスキームを使用してトレーニングされている。
実験の結果,提案モデルでは,統計層とエピソードベーストレーニングの利点が示された。
さらに、PainNetは、自己報告の痛み推定における最先端の結果よりも優れています。
関連論文リスト
- Faces of Experimental Pain: Transferability of Deep Learned Heat Pain Features to Electrical Pain [7.205834345343974]
本研究では,ある種類の実験的痛みに対する深層学習の特徴表現が他の痛みに伝達できるかどうかを検討する。
チャレンジデータセットには、電気的痛みの強度が異なる65人の参加者から収集されたデータが含まれている。
提案手法では,BioVidデータセットに基づいてトレーニングされた既存の熱痛畳み込みニューラルネットワーク(CNN)を特徴抽出器として活用する。
論文 参考訳(メタデータ) (2024-06-17T17:51:54Z) - Perception Test: A Diagnostic Benchmark for Multimodal Video Models [78.64546291816117]
本稿では,事前学習したマルチモーダルモデルの知覚と推論能力を評価するために,新しいマルチモーダルビデオベンチマークを提案する。
知覚テストは、スキル(記憶、抽象化、物理学、セマンティックス)と、ビデオ、オーディオ、テキストモダリティ間の推論(記述的、説明的、予測的、反ファクト的)のタイプに焦点を当てている。
このベンチマークは、ゼロショット/少数ショットまたは限定的な微調整方式で、転送機能の事前訓練されたモデルを探索する。
論文 参考訳(メタデータ) (2023-05-23T07:54:37Z) - SegPrompt: Using Segmentation Map as a Better Prompt to Finetune Deep
Models for Kidney Stone Classification [62.403510793388705]
深層学習は、内視鏡画像を用いた腎臓結石分類のための奨励的な結果を生み出している。
注釈付きトレーニングデータの不足は、トレーニングされたモデルの性能と一般化能力を改善する上で深刻な問題を引き起こす。
本稿では,セグメンテーションマップを2つの側面から活用することにより,データ不足問題を軽減するためにSegPromptを提案する。
論文 参考訳(メタデータ) (2023-03-15T01:30:48Z) - Transformer Encoder with Multiscale Deep Learning for Pain
Classification Using Physiological Signals [0.0]
痛みは主観的な感覚駆動体験である。
痛みの強さを測定する伝統的な技術は偏見に影響を受けやすく、場合によっては信頼できない。
そこで我々は,生理的シグナルを入力として,痛み強度を分類する新しいトランスフォーマーエンコーダディープラーニングフレームワークPainAttnNetを開発した。
論文 参考訳(メタデータ) (2023-03-13T04:21:33Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
2つの医用画像データセットのセマンティックセグメンテーションにパラメータ効率が良いが効果的な適応を実現するために,いくつかのコントリビューションを提案し,検討する。
我々はこのアーキテクチャを、オンライン生成プロトタイプへの割り当てに基づく専用密集型セルフスーパービジョンスキームで事前訓練する。
得られたニューラルネットワークモデルにより、完全に微調整されたモデルとパラメータに適応したモデルとのギャップを緩和できることを実証する。
論文 参考訳(メタデータ) (2022-11-16T21:55:05Z) - Decoupled Mixup for Generalized Visual Recognition [71.13734761715472]
視覚認識のためのCNNモデルを学習するための新しい「デカップリング・ミクスアップ」手法を提案する。
本手法は,各画像を識別領域と雑音発生領域に分離し,これらの領域を均一に組み合わせてCNNモデルを訓練する。
実験結果から,未知のコンテキストからなるデータに対する本手法の高一般化性能を示す。
論文 参考訳(メタデータ) (2022-10-26T15:21:39Z) - Min-Max Similarity: A Contrastive Learning Based Semi-Supervised
Learning Network for Surgical Tools Segmentation [0.0]
コントラスト学習に基づく半教師付きセグメンテーションネットワークを提案する。
従来の最先端技術とは対照的に、両視点トレーニングの対照的な学習形式を導入する。
提案手法は、最先端の半教師付きおよび完全教師付きセグメンテーションアルゴリズムを一貫して上回る。
論文 参考訳(メタデータ) (2022-03-29T01:40:26Z) - You Only Need End-to-End Training for Long-Tailed Recognition [8.789819609485225]
クロスエントロピー損失は、不均衡なデータに非常に相関した特徴をもたらす傾向にある。
ブロックベース相対平衡バッチサンプリング(B3RS)とバッチ埋め込みトレーニング(BET)の2つの新しいモジュールを提案する。
CIFAR-LT と ImageNet-LT の長期分類ベンチマークによる実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2021-12-11T11:44:09Z) - Automatic Foot Ulcer segmentation Using an Ensemble of Convolutional
Neural Networks [3.037637906402173]
本稿では,2つのエンコーダデコーダに基づくCNNモデル,すなわちLinkNetとUNetに基づくアンサンブルアプローチを提案する。
提案手法は,最新データに基づくDiceスコアを92.07%,88.80%とした。
論文 参考訳(メタデータ) (2021-09-03T09:55:04Z) - Personalized Federated Deep Learning for Pain Estimation From Face
Images [31.890455005028706]
顔画像から痛みを推定するためのPersonalized Deep Learning (PFDL) アプローチを提案する。
PFDLは、顔画像を共有することなく、異なるクライアント間で軽量CNNアーキテクチャを使用して実装されたディープモデルの協調トレーニングを実行する。
PFDL が標準集中型および FL アルゴリズムよりも比較可能または良く動作し、データプライバシーをさらに向上させることを示す。
論文 参考訳(メタデータ) (2021-01-12T23:21:25Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
病理組織像における腺分節に対するPRS2モデルを提案する。
このモデルはセグメンテーションネットワーク(S-Net)とペア関係ネットワーク(PR-Net)から構成される。
我々は,GlaSデータセットの最近の5つの手法とCRAGデータセットの最近の3つの手法を比較した。
論文 参考訳(メタデータ) (2020-08-06T15:02:38Z) - Dense Regression Network for Video Grounding [97.57178850020327]
地上の真理の中のフレームと開始(終了)フレームの間の距離を高密度の監督として利用し、映像のグラウンド化精度を向上させる。
具体的には、各フレームからビデオセグメントの開始(終了)フレームまでの距離を抑えるために、新しい高密度回帰ネットワーク(DRN)を設計する。
また,グラウンドリング結果の局所化品質を明示的に考慮するために,単純だが効果的なIoU回帰ヘッドモジュールを提案する。
論文 参考訳(メタデータ) (2020-04-07T17:15:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。