Well2Flow: Reconstruction of reservoir states from sparse wells using score-based generative models
- URL: http://arxiv.org/abs/2504.06305v1
- Date: Mon, 07 Apr 2025 20:12:19 GMT
- Title: Well2Flow: Reconstruction of reservoir states from sparse wells using score-based generative models
- Authors: Shiqin Zeng, Haoyun Li, Abhinav Prakash Gahlot, Felix J. Herrmann,
- Abstract summary: This study investigates the use of score-based generative models for reservoir simulation scenarios.<n>It focuses on reconstructing spatially porous and saturation fields in saline aquifers, inferred from sparse observations at two well locations.<n>It introduces a novel methodology for incorporating physical constraints and well log guidance into generative models, significantly enhancing the accuracy and physical plausibility of the reconstructed subsurface states.
- Score: 0.22499166814992438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the use of score-based generative models for reservoir simulation, with a focus on reconstructing spatially varying permeability and saturation fields in saline aquifers, inferred from sparse observations at two well locations. By modeling the joint distribution of permeability and saturation derived from high-fidelity reservoir simulations, the proposed neural network is trained to learn the complex spatiotemporal dynamics governing multiphase fluid flow in porous media. During inference, the framework effectively reconstructs both permeability and saturation fields by conditioning on sparse vertical profiles extracted from well log data. This approach introduces a novel methodology for incorporating physical constraints and well log guidance into generative models, significantly enhancing the accuracy and physical plausibility of the reconstructed subsurface states. Furthermore, the framework demonstrates strong generalization capabilities across varying geological scenarios, highlighting its potential for practical deployment in data-scarce reservoir management tasks.
Related papers
- Hierarchically Disentangled Recurrent Network for Factorizing System Dynamics of Multi-scale Systems: An application on Hydrological Systems [4.634606500665259]
We propose a novel hierarchical recurrent neural architecture that factorizes the system dynamics at multiple temporal scales.
Experiments on several catchments from the National Weather Service North Central River Forecast Center show that FHNN outperforms standard baselines.
We show that FHNN can maintain accuracy even with limited training data through effective pre-training strategies and training global models.
arXiv Detail & Related papers (2024-07-29T16:25:43Z) - Towards Interpretable Physical-Conceptual Catchment-Scale Hydrological Modeling using the Mass-Conserving-Perceptron [1.1510009152620668]
This study sets the stage for interpretable regional-scale MCP-based hydrological modeling (using large sample data) by using neural architecture search to determine appropriate minimal representations for catchments in different hydroclimatic regimes.
arXiv Detail & Related papers (2024-01-25T21:26:49Z) - Multi-Modal Learning-based Reconstruction of High-Resolution Spatial
Wind Speed Fields [46.72819846541652]
We propose a framework based on Vari Data Assimilation and Deep Learning concepts.
This framework is applied to recover rich-in-time, high-resolution information on sea surface wind speed.
arXiv Detail & Related papers (2023-12-14T13:40:39Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
We interface with a model of a hydrodynamic system, under development by a startup, as a computational reservoir.
We optimized the readout times and how inputs are mapped to the wave amplitude or frequency using an evolutionary search algorithm.
Applying evolutionary methods to this reservoir system substantially improved separability on an XNOR task, in comparison to implementations with hand-selected parameters.
arXiv Detail & Related papers (2023-04-20T19:15:02Z) - Combined mechanistic and machine learning method for construction of oil
reservoir permeability map consistent with well test measurements [0.0]
Nadaraya-Watson kernel regression is used to approximate two-dimensional spatial distribution of rock permeability.
We show that the constructed permeability map is hydrodynamically similar to the original one.
arXiv Detail & Related papers (2022-12-20T10:43:13Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
The proposed algorithm is a distributed Bayesian filtering task for finite-state hidden Markov models.
It can be used for sequential state estimation, as well as for modeling opinion formation over social networks under dynamic environments.
arXiv Detail & Related papers (2022-12-05T19:40:17Z) - Deep-learning-based coupled flow-geomechanics surrogate model for CO$_2$
sequestration [4.635171370680939]
The 3D recurrent R-U-Net model combines deep convolutional and recurrent neural networks to capture the spatial distribution and temporal evolution of saturation, pressure and surface displacement fields.
The surrogate model is trained to predict the 3D CO2 saturation and pressure fields in the storage aquifer, and 2D displacement maps at the Earth's surface.
arXiv Detail & Related papers (2021-05-04T07:34:15Z) - Surface Warping Incorporating Machine Learning Assisted Domain
Likelihood Estimation: A New Paradigm in Mine Geology Modelling and
Automation [68.8204255655161]
A Bayesian warping technique has been proposed to reshape modeled surfaces based on geochemical and spatial constraints imposed by newly acquired blasthole data.
This paper focuses on incorporating machine learning in this warping framework to make the likelihood generalizable.
Its foundation is laid by a Bayesian computation in which the geological domain likelihood given the chemistry, p(g|c) plays a similar role to p(y(c)|g.
arXiv Detail & Related papers (2021-02-15T10:37:52Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.