論文の概要: Analyzing the Impact of Low-Rank Adaptation for Cross-Domain Few-Shot Object Detection in Aerial Images
- arxiv url: http://arxiv.org/abs/2504.06330v1
- Date: Tue, 08 Apr 2025 14:10:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:07:31.790373
- Title: Analyzing the Impact of Low-Rank Adaptation for Cross-Domain Few-Shot Object Detection in Aerial Images
- Title(参考訳): 空中画像におけるクロスドメインFew-Shot物体検出における低ランク適応の影響の解析
- Authors: Hicham Talaoubrid, Anissa Mokraoui, Ismail Ben Ayed, Axel Prouvost, Sonimith Hang, Monit Korn, Rémi Harvey,
- Abstract要約: 本稿では,ローランド適応 (LoRA) の航空画像におけるクロスドメイン小ショット物体検出のための小型モデルへの適用について検討する。
LoRAはオーバーフィッティングを軽減し、リソース制約のある設定に対して有望なアプローチになる。
この結果から,初期微調整後にLoRAを適用した場合,低ショット設定時の性能が若干向上することがわかった。
- 参考スコア(独自算出の注目度): 9.869549856965259
- License:
- Abstract: This paper investigates the application of Low-Rank Adaptation (LoRA) to small models for cross-domain few-shot object detection in aerial images. Originally designed for large-scale models, LoRA helps mitigate overfitting, making it a promising approach for resource-constrained settings. We integrate LoRA into DiffusionDet, and evaluate its performance on the DOTA and DIOR datasets. Our results show that LoRA applied after an initial fine-tuning slightly improves performance in low-shot settings (e.g., 1-shot and 5-shot), while full fine-tuning remains more effective in higher-shot configurations. These findings highlight LoRA's potential for efficient adaptation in aerial object detection, encouraging further research into parameter-efficient fine-tuning strategies for few-shot learning. Our code is available here: https://github.com/HichTala/LoRA-DiffusionDet.
- Abstract(参考訳): 本稿では,ローランド適応 (LoRA) の航空画像におけるクロスドメイン小ショット物体検出のための小型モデルへの適用について検討する。
もともとは大規模モデル向けに設計されたLoRAは、オーバーフィッティングを軽減し、リソース制約のある設定に対して有望なアプローチである。
私たちはLoRAをDiffusionDetに統合し、DOTAおよびDIORデータセットのパフォーマンスを評価します。
以上の結果から,初期微調整後のLoRAは低ショット設定(例えば,1ショット,5ショット)の性能をわずかに向上する一方,フル微調整は高ショット設定において有効であることがわかった。
これらの知見は、LoRAが空中物体検出に効率的に適応する可能性を強調し、数発の学習のためのパラメータ効率の良い微調整戦略をさらに研究することを奨励している。
私たちのコードは、https://github.com/HichTala/LoRA-DiffusionDet.comで利用可能です。
関連論文リスト
- BeamLoRA: Beam-Constraint Low-Rank Adaptation [51.52097743781401]
Low-Rank Adaptation (LoRA) はパラメータ効率の良い微調整法として広く採用されている。
本研究では,各LoRAモジュールを,各ランクが潜在的サブソリューションに対応するビームとして概念化するビームロラを提案する。
論文 参考訳(メタデータ) (2025-02-19T10:33:22Z) - SD-LoRA: Scalable Decoupled Low-Rank Adaptation for Class Incremental Learning [73.93639228235622]
基礎モデルによる継続的な学習は、シーケンシャルなタスクに取り組むための事前トレーニング中に得られた豊富な知識を活用するための有望なパラダイムとして現れてきた。
既存のプロンプトベースおよびローランク適応ベース(LoRAベース)メソッドでは、プロンプト/ローラプールの拡張や、以前のタスクのサンプルの保持がしばしば必要である。
クラスインクリメンタル学習のためのスケーラブルデカップリングLoRA(SD-LoRA)を提案する。
論文 参考訳(メタデータ) (2025-01-22T20:00:41Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) は、ファインチューニングモデルの一般的なテクニックである。
LoRAは、フルパラメータの微調整と比較すると、しばしば実行されます。
本稿では,LoRA手法の適応率を厳密に分析するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-10T18:51:53Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) は低ランク行列のみを最適化することでモデルを微調整する効率的な方法である。
ロラ空間に平坦に見える解は、全パラメータ空間に鋭い方向が存在し、一般化性能を損なう可能性がある。
フルパラメータ空間の平坦領域に位置する低ランク適応を求める効率的なアプローチであるFlat-LoRAを提案する。
論文 参考訳(メタデータ) (2024-09-22T11:24:10Z) - Rapid Adaptation of Earth Observation Foundation Models for Segmentation [1.3654846342364308]
ローランド適応(LoRA)は、洪水セグメンテーションのための地球観測(EO)基礎モデルに使用できる。
LoRAは凍結エンコーダベースラインに比べてF1スコアを6.66ポイント、IoUを0.11ポイント改善する。
論文 参考訳(メタデータ) (2024-09-16T00:42:45Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
LoRAとしても知られる低ランク適応は、基礎モデルのパラメータ効率の細かい調整のための顕著な手法として登場した。
計算効率にもかかわらず、LoRAは完全な微調整に比べて性能が劣っている。
低ランク行列の勾配を戦略的に調整することでLoRAの性能を向上させる手法であるLoRA-Proを導入する。
論文 参考訳(メタデータ) (2024-07-25T17:57:12Z) - Unlocking the Global Synergies in Low-Rank Adapters [20.32980343066711]
低ランク適応(LoRA)は、大規模言語モデルのためのデファクトパラメータ効率の高い微調整技術である。
本稿では、ゼロコストプロキシを利用して限られたLoRAトレーニングパラメータを割り当てる軽量探索アルゴリズムであるHeteroLoRAを提案する。
実験の結果、HeteroLoRAは同じパラメータのバッジでモデルパフォーマンスを改善することができることがわかった。
論文 参考訳(メタデータ) (2024-06-21T08:10:03Z) - ALoRA: Allocating Low-Rank Adaptation for Fine-tuning Large Language Models [8.251547772610301]
低ランク適応 (LoRA) の方法論を、低ランク適応 (AloRA) と呼ぶ革新的なアプローチに拡張する。
まず,各ランクの重要度を効果的に推定できる新しい手法であるAB-LoRAを提案する。
第2に、AB-LoRAによって導かれ、我々は徐々にLoRAのランクに多く負の影響を及ぼし、高いランクを必要とする重要なトランスフォーマーモジュールにローラの予算を割り当てる。
論文 参考訳(メタデータ) (2024-03-24T15:09:55Z) - LoRA-drop: Efficient LoRA Parameter Pruning based on Output Evaluation [27.123271324468657]
Low-Rank Adaptation (LoRA)は、現在最も一般的に使われている言語である。
効率的な微細チューニング法(PEFT)。
各レイヤの補助パラメータを導入し、限られたコンピューティングリソースの下で事前訓練されたモデルを微調整する。
しかし、より大きなモデルにスケールアップする際には、依然としてリソース消費の課題に直面している。
論文 参考訳(メタデータ) (2024-02-12T15:34:56Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。