論文の概要: Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape
- arxiv url: http://arxiv.org/abs/2409.14396v1
- Date: Sun, 22 Sep 2024 11:24:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 22:52:52.939129
- Title: Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape
- Title(参考訳): 平らなロラ:平らなロスランドスケープへの低ランク適応
- Authors: Tao Li, Zhengbao He, Yujun Li, Yasheng Wang, Lifeng Shang, Xiaolin Huang,
- Abstract要約: Low-Rank Adaptation (LoRA) は低ランク行列のみを最適化することでモデルを微調整する効率的な方法である。
ロラ空間に平坦に見える解は、全パラメータ空間に鋭い方向が存在し、一般化性能を損なう可能性がある。
フルパラメータ空間の平坦領域に位置する低ランク適応を求める効率的なアプローチであるFlat-LoRAを提案する。
- 参考スコア(独自算出の注目度): 52.98187034726091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning large-scale pre-trained models is prohibitively expensive in terms of computational and memory costs. Low-Rank Adaptation (LoRA), a popular Parameter-Efficient Fine-Tuning (PEFT) method, provides an efficient way to fine-tune models by optimizing only a low-rank matrix. Despite recent progress made in improving LoRA's performance, the connection between the LoRA optimization space and the original full parameter space is often overlooked. A solution that appears flat in the LoRA space may exist sharp directions in the full parameter space, potentially harming generalization performance. In this paper, we propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a flat region of the full parameter space.Instead of relying on the well-established sharpness-aware minimization approach, which can incur significant computational and memory burdens, we utilize random weight perturbation with a Bayesian expectation loss objective to maintain training efficiency and design a refined perturbation generation strategy for improved performance. Experiments on natural language processing and image classification tasks with various architectures demonstrate the effectiveness of our approach.
- Abstract(参考訳): 微調整された大規模事前訓練モデルは、計算とメモリコストの点で極めて高価である。
Low-Rank Adaptation (LoRA) はパラメータ効率の良いファインチューニング(PEFT)法であり、低ランク行列のみを最適化することで、モデルを微調整する効率的な方法を提供する。
LoRAの性能改善の最近の進歩にもかかわらず、LoRA最適化空間と元の完全なパラメータ空間との接続はしばしば見過ごされる。
ロラ空間に平坦に見える解は、全パラメータ空間に鋭い方向が存在し、一般化性能を損なう可能性がある。
本稿では、フルパラメータ空間の平坦な領域に位置する低ランク適応を求める効率的なアプローチであるFlat-LoRAを提案し、計算量やメモリ負荷を著しく低減できる、確立されたシャープネス認識最小化アプローチに頼る代わりに、ベイズ予測損失目標によるランダムな重量摂動を利用してトレーニング効率の維持と改良された摂動生成戦略の設計を行う。
自然言語処理と様々なアーキテクチャを用いた画像分類タスクの実験により,提案手法の有効性が示された。
関連論文リスト
- Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - GeoLoRA: Geometric integration for parameter efficient fine-tuning [6.701651480567394]
Low-Rank Adaptation (LoRA) は、事前学習されたニューラルネットワークのパラメータ効率の高い微調整法として広く使われている。
動的低ランク近似理論を応用した新しいアプローチであるGeoLoRAを導入する。
その結果,GeoLoRAの精度と計算効率の両面において既存手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-24T13:26:10Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) は、下流タスクのための大規模な事前学習モデルに効果的に適応する、PEFT (Efficient Fine Tuning) 手法として人気がある。
モデル更新に低階テンソルパラメトリゼーションを用いる新しい手法を提案する。
提案手法は,大規模言語モデルの微調整に有効であり,比較性能を維持しつつ,パラメータ数の大幅な削減を実現している。
論文 参考訳(メタデータ) (2024-10-05T06:59:50Z) - LoRA-Pro: Are Low-Rank Adapters Properly Optimized? [121.0693322732454]
LoRAとしても知られる低ランク適応は、基礎モデルのパラメータ効率の細かい調整のための顕著な手法として登場した。
計算効率にもかかわらず、LoRAは完全な微調整に比べて性能が劣っている。
低ランク行列の勾配を戦略的に調整することでLoRAの性能を向上させる手法であるLoRA-Proを導入する。
論文 参考訳(メタデータ) (2024-07-25T17:57:12Z) - LoRA-SP: Streamlined Partial Parameter Adaptation for Resource-Efficient Fine-Tuning of Large Language Models [7.926974917872204]
LoRA-SPはランダム化半選択パラメータ凍結を利用した新しい手法である。
LoRA-SPは、モデル性能を損なうことなく、計算とメモリの要求を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-28T06:50:10Z) - Flora: Low-Rank Adapters Are Secretly Gradient Compressors [30.224822087562163]
低ランク適応(LoRA)は、少ないパラメータをトレーニングすることで最適化状態を低減するために提案される。
LoRAは全体の重量更新行列を低ランクに制限し、モデル性能を制限している。
本稿では,プロジェクション行列を再サンプリングすることで高階更新を実現する Flora を提案する。
論文 参考訳(メタデータ) (2024-02-05T18:50:39Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
我々はPRILoRAを導入し、各層ごとに異なるランクを線形に割り当て、トレーニングプロセスを通してプルーニングを行う。
8つのGLUEベンチマークで広範な実験を行い,PRILoRAの有効性を検証する。
論文 参考訳(メタデータ) (2024-01-20T20:25:17Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
本稿では,適応過程における固有ランクの動的調整を可能にする疎低ランク適応(SoRA)を提案する。
提案手法は,LoRAを高いランクで初期化すると同時に,一時的に増大するパラメータを効率的に利用することにより,LoRAの表現力を向上する。
実験の結果,SoRAは70%の保持パラメータと70%のトレーニング時間でも,他のベースラインよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-20T11:56:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。