論文の概要: Unifying Autoregressive and Diffusion-Based Sequence Generation
- arxiv url: http://arxiv.org/abs/2504.06416v1
- Date: Tue, 08 Apr 2025 20:32:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:05:49.256237
- Title: Unifying Autoregressive and Diffusion-Based Sequence Generation
- Title(参考訳): 自己回帰と拡散に基づくシーケンス生成の統一
- Authors: Nima Fathi, Torsten Scholak, Pierre-André Noël,
- Abstract要約: 本稿では,拡散に基づく系列生成モデルの拡張について述べる。
個別のトークン位置に異なるノイズスケジュールを割り当てるハイパースケジューリングを導入する。
第2に,吸収過程と一様過程の間に介在する2つのハイブリッドトークン単位のノイズ発生過程を提案し,過去の誤りを解消する。
- 参考スコア(独自算出の注目度): 2.3923884480793673
- License:
- Abstract: We present significant extensions to diffusion-based sequence generation models, blurring the line with autoregressive language models. We introduce hyperschedules, which assign distinct noise schedules to individual token positions, generalizing both autoregressive models (e.g., GPT) and conventional diffusion models (e.g., SEDD, MDLM) as special cases. Second, we propose two hybrid token-wise noising processes that interpolate between absorbing and uniform processes, enabling the model to fix past mistakes, and we introduce a novel inference algorithm that leverages this new feature in a simplified context inspired from MDLM. To support efficient training and inference, we design attention masks compatible with KV-caching. Our methods achieve state-of-the-art perplexity and generate diverse, high-quality sequences across standard benchmarks, suggesting a promising path for autoregressive diffusion-based sequence generation.
- Abstract(参考訳): 拡散に基づくシーケンス生成モデルに対して,自己回帰型言語モデルで行を曖昧にする重要な拡張を提示する。
本稿では,個々のトークン位置に対して異なるノイズスケジュールを割り当てるハイパースケジュールを導入し,自己回帰モデル(例えば,GPT)と従来の拡散モデル(例えば,SEDD,MDLM)を特殊ケースとして一般化する。
第二に,吸収プロセスと均一プロセスの間を補間し,過去の誤りを解消する2つのハイブリッドトークンワイドノーミングプロセスを提案し,MDLMにインスパイアされた単純化された文脈で,この新機能を活用する新しい推論アルゴリズムを提案する。
効率的なトレーニングと推論を支援するため,我々はKVキャッシングと互換性のあるアテンションマスクを設計する。
提案手法は,最先端のパープレキシティを実現し,標準ベンチマークにまたがる多種多様な高品質なシーケンスを生成し,自己回帰拡散に基づくシーケンス生成の道筋を示唆する。
関連論文リスト
- RDPM: Solve Diffusion Probabilistic Models via Recurrent Token Prediction [17.005198258689035]
拡散確率モデル(DPM)は、高忠実度画像合成のデファクトアプローチとして登場した。
本稿では, 再帰的拡散確率モデル(RDPM, Recurrent Diffusion Probabilistic Model)を提案する。
論文 参考訳(メタデータ) (2024-12-24T12:28:19Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
本稿では,確率論的推論の課題として,事前学習したMDMを操る作業を行う新しいフレームワークであるDDPPを紹介する。
私たちのフレームワークは、3つの新しい目標のファミリーにつながります。
Wet-lab Validation(ウェット・ラブ・バリデーション)を用いて,報酬最適化タンパク質配列の過渡的発現を観察する。
論文 参考訳(メタデータ) (2024-10-10T17:18:30Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
拡散モデルは、画像、分子、DNA、RNA、タンパク質配列の自然なデザイン空間を捉えるのに優れている。
これらの設計空間の自然性を保ちながら、下流の報酬関数を最適化することを目指している。
提案アルゴリズムは,中間雑音状態が将来高い報酬をもたらすことの先駆けとして,ソフトバリュー関数を統合する。
論文 参考訳(メタデータ) (2024-08-15T16:47:59Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
モデル反転攻撃(MIA)は、ターゲット分類器のトレーニングセットからプライベートイメージを再構築することを目的としており、それによってAIアプリケーションにおけるプライバシー上の懸念が高まる。
従来のGANベースのMIAは、GANの固有の欠陥と潜伏空間における最適化の偏りにより、劣った遺伝子的忠実度に悩まされる傾向にある。
これらの問題を緩和するために拡散モデル反転(Diff-MI)攻撃を提案する。
論文 参考訳(メタデータ) (2024-07-16T06:38:49Z) - Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion [61.03681839276652]
拡散強制(Diffusion Forcing)は、拡散モデルをトレーニングし、トークンの集合に独立した音レベルを付与する、新たなトレーニングパラダイムである。
因果的次トーケン予測モデルを訓練して1つまたは複数の未来のトークンを生成することで、シーケンス生成モデルに拡散強制を適用する。
論文 参考訳(メタデータ) (2024-07-01T15:43:25Z) - Discrete Diffusion Language Model for Efficient Text Summarization [19.267738861590487]
本稿では,トランスフォーマーのバックボーンが長いシーケンスを効果的に扱えるような,セマンティック・アウェア・ノーミング・プロセスを提案する。
提案手法は,Gigaword,CNN/DailyMail,Arxivの3つのベンチマーク要約データセットに対して,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-06-25T09:55:22Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
タンパク質設計における一般的なアプローチは、生成モデルと条件付きサンプリングのための識別モデルを組み合わせることである。
離散拡散モデルのためのガイダンス手法であるdiffusioN Optimized Smpling (NOS)を提案する。
NOSは、構造に基づく手法の重要な制限を回避し、シーケンス空間で直接設計を行うことができる。
論文 参考訳(メタデータ) (2023-05-31T16:31:24Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - Symbolic Music Generation with Diffusion Models [4.817429789586127]
本論文では,前訓練された可変オートエンコーダの連続潜空間における離散領域をパラメータ化することにより,連続データに対する拡散モデルを訓練する手法を提案する。
同じ連続埋め込み上で動作する自己回帰型言語モデルと比較して,強い無条件生成とポストホック条件付インフィル結果を示す。
論文 参考訳(メタデータ) (2021-03-30T05:48:05Z) - Adversarial and Contrastive Variational Autoencoder for Sequential
Recommendation [25.37244686572865]
本稿では、逐次レコメンデーションのためのAdversarial and Contrastive Variational Autoencoder (ACVAE) と呼ばれる新しい手法を提案する。
まず,本モデルが高品質な潜在変数を生成することを可能にするadversarial variational bayesフレームワークの下で,シーケンス生成のためのadversarial trainingを導入する。
さらに、シーケンスをエンコードする場合、シーケンス内のグローバルおよびローカルの関係をキャプチャするために、繰り返しおよび畳み込み構造を適用します。
論文 参考訳(メタデータ) (2021-03-19T09:01:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。