Federated Neural Architecture Search with Model-Agnostic Meta Learning
- URL: http://arxiv.org/abs/2504.06457v1
- Date: Tue, 08 Apr 2025 21:57:40 GMT
- Title: Federated Neural Architecture Search with Model-Agnostic Meta Learning
- Authors: Xinyuan Huang, Jiechao Gao,
- Abstract summary: Federated Neural Architecture Search (NAS) enables collaborative search for optimal model architectures tailored to heterogeneous data to achieve higher accuracy.<n>We introduce FedMetaNAS, a framework that integrates meta-learning with NAS within the Federated Learning context.<n>We show that FedMetaNAS significantly accelerates the search process by more than 50% with higher accuracy compared to FedNAS.
- Score: 7.542593703407386
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated Learning (FL) often struggles with data heterogeneity due to the naturally uneven distribution of user data across devices. Federated Neural Architecture Search (NAS) enables collaborative search for optimal model architectures tailored to heterogeneous data to achieve higher accuracy. However, this process is time-consuming due to extensive search space and retraining. To overcome this, we introduce FedMetaNAS, a framework that integrates meta-learning with NAS within the FL context to expedite the architecture search by pruning the search space and eliminating the retraining stage. Our approach first utilizes the Gumbel-Softmax reparameterization to facilitate relaxation of the mixed operations in the search space. We then refine the local search process by incorporating Model-Agnostic Meta-Learning, where a task-specific learner adapts both weights and architecture parameters (alphas) for individual tasks, while a meta learner adjusts the overall model weights and alphas based on the gradient information from task learners. Following the meta-update, we propose soft pruning using the same trick on search space to gradually sparsify the architecture, ensuring that the performance of the chosen architecture remains robust after pruning which allows for immediate use of the model without retraining. Experimental evaluations demonstrate that FedMetaNAS significantly accelerates the search process by more than 50\% with higher accuracy compared to FedNAS.
Related papers
- ZeroLM: Data-Free Transformer Architecture Search for Language Models [54.83882149157548]
Current automated proxy discovery approaches suffer from extended search times, susceptibility to data overfitting, and structural complexity.
This paper introduces a novel zero-cost proxy methodology that quantifies model capacity through efficient weight statistics.
Our evaluation demonstrates the superiority of this approach, achieving a Spearman's rho of 0.76 and Kendall's tau of 0.53 on the FlexiBERT benchmark.
arXiv Detail & Related papers (2025-03-24T13:11:22Z) - Efficient Global Neural Architecture Search [2.0973843981871574]
We propose an architecture-aware approximation with variable training schemes for different networks.<n>Our proposed framework achieves a new state-of-the-art on EMNIST and KMNIST, while being highly competitive on the CIFAR-10, CIFAR-100, and FashionMNIST datasets.
arXiv Detail & Related papers (2025-02-05T19:10:17Z) - A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
Neural architecture search (NAS) enables re-searchers to automatically explore vast search spaces and find efficient neural networks.
NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process.
We propose the SMEM-NAS, a pairwise com-parison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism.
arXiv Detail & Related papers (2024-07-22T12:46:22Z) - Training-free Neural Architecture Search for RNNs and Transformers [0.0]
We develop a new training-free metric, named hidden covariance, that predicts the trained performance of an RNN architecture.
We find that the current search space paradigm for transformer architectures is not optimized for training-free neural architecture search.
arXiv Detail & Related papers (2023-06-01T02:06:13Z) - $\beta$-DARTS: Beta-Decay Regularization for Differentiable Architecture
Search [85.84110365657455]
We propose a simple-but-efficient regularization method, termed as Beta-Decay, to regularize the DARTS-based NAS searching process.
Experimental results on NAS-Bench-201 show that our proposed method can help to stabilize the searching process and makes the searched network more transferable across different datasets.
arXiv Detail & Related papers (2022-03-03T11:47:14Z) - SPIDER: Searching Personalized Neural Architecture for Federated
Learning [17.61748275091843]
Federated learning (FL) assists machine learning when data cannot be shared with a centralized server due to privacy and regulatory restrictions.
Recent advancements in FL use predefined architecture-based learning for all the clients.
We introduce SPIDER, an algorithmic framework that aims to Search Personalized neural architecture for federated learning.
arXiv Detail & Related papers (2021-12-27T23:42:15Z) - FNAS: Uncertainty-Aware Fast Neural Architecture Search [54.49650267859032]
Reinforcement learning (RL)-based neural architecture search (NAS) generally guarantees better convergence yet suffers from the requirement of huge computational resources.
We propose a general pipeline to accelerate the convergence of the rollout process as well as the RL process in NAS.
Experiments on the Mobile Neural Architecture Search (MNAS) search space show the proposed Fast Neural Architecture Search (FNAS) accelerates standard RL-based NAS process by 10x.
arXiv Detail & Related papers (2021-05-25T06:32:52Z) - Prioritized Architecture Sampling with Monto-Carlo Tree Search [54.72096546595955]
One-shot neural architecture search (NAS) methods significantly reduce the search cost by considering the whole search space as one network.
In this paper, we introduce a sampling strategy based on Monte Carlo tree search (MCTS) with the search space modeled as a Monte Carlo tree (MCT)
For a fair comparison, we construct an open-source NAS benchmark of a macro search space evaluated on CIFAR-10, namely NAS-Bench-Macro.
arXiv Detail & Related papers (2021-03-22T15:09:29Z) - DrNAS: Dirichlet Neural Architecture Search [88.56953713817545]
We treat the continuously relaxed architecture mixing weight as random variables, modeled by Dirichlet distribution.
With recently developed pathwise derivatives, the Dirichlet parameters can be easily optimized with gradient-based generalization.
To alleviate the large memory consumption of differentiable NAS, we propose a simple yet effective progressive learning scheme.
arXiv Detail & Related papers (2020-06-18T08:23:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.