Analyzing the Performance of Variational Quantum Factoring on a
Superconducting Quantum Processor
- URL: http://arxiv.org/abs/2012.07825v2
- Date: Tue, 9 Mar 2021 20:24:37 GMT
- Title: Analyzing the Performance of Variational Quantum Factoring on a
Superconducting Quantum Processor
- Authors: Amir H. Karamlou, William A. Simon, Amara Katabarwa, Travis L.
Scholten, Borja Peropadre, and Yudong Cao
- Abstract summary: We study a QAOA-based quantum optimization algorithm by implementing the Variational Quantum Factoring (VQF) algorithm.
We demonstrate the impact of different noise sources on the performance of QAOA and reveal the coherent error caused by the residual ZZ-coupling between qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the near-term, hybrid quantum-classical algorithms hold great potential
for outperforming classical approaches. Understanding how these two computing
paradigms work in tandem is critical for identifying areas where such hybrid
algorithms could provide a quantum advantage. In this work, we study a
QAOA-based quantum optimization algorithm by implementing the Variational
Quantum Factoring (VQF) algorithm. We execute experimental demonstrations using
a superconducting quantum processor and investigate the trade-off between
quantum resources (number of qubits and circuit depth) and the probability that
a given biprime is successfully factored. In our experiments, the integers
1099551473989, 3127, and 6557 are factored with 3, 4, and 5 qubits,
respectively, using a QAOA ansatz with up to 8 layers and we are able to
identify the optimal number of circuit layers for a given instance to maximize
success probability. Furthermore, we demonstrate the impact of different noise
sources on the performance of QAOA and reveal the coherent error caused by the
residual ZZ-coupling between qubits as a dominant source of error in the
superconducting quantum processor.
Related papers
- Learning the expressibility of quantum circuit ansatz using transformer [5.368973814856243]
We propose using a transformer model to predict the expressibility of quantum circuit ansatze.
This research can enhance the understanding of the expressibility of quantum circuit ansatze and advance quantum architecture search algorithms.
arXiv Detail & Related papers (2024-05-29T07:34:07Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Calibrating the role of entanglement in variational quantum circuits [0.6435156676256051]
Entanglement is a key property of quantum computing that separates it from its classical counterpart.
We systematically probe the role of entanglement in the working of two variational quantum algorithms.
We find that for the MAX-CUT problem solved using QAOA, the fidelity as a function of entanglement is highly dependent on the number of layers.
In the case of QNNs, trained circuits with high test accuracies are underpinned by higher entanglement, with any enforced limitation in entanglement resulting in a sharp decline in test accuracy.
arXiv Detail & Related papers (2023-10-16T23:36:40Z) - Quantum Speedup for Higher-Order Unconstrained Binary Optimization and
MIMO Maximum Likelihood Detection [2.5272389610447856]
We propose a quantum algorithm that supports a real-valued higher-order unconstrained binary optimization problem.
The proposed algorithm is capable of reducing the query complexity in the classical domain and providing a quadratic speedup in the quantum domain.
arXiv Detail & Related papers (2022-05-31T00:14:49Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Scalable evaluation of quantum-circuit error loss using Clifford
sampling [8.140947383885262]
We use the quadratic error loss and the final-state fidelity loss to characterize quantum circuits.
It is shown that these loss functions can be efficiently evaluated in a scalable way by sampling from Clifford-dominated circuits.
Our results pave the way towards the optimization-based quantum device and algorithm design in the intermediate-scale quantum regime.
arXiv Detail & Related papers (2020-07-20T11:51:36Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.