A Neuro-inspired Interpretation of Unlearning in Large Language Models through Sample-level Unlearning Difficulty
- URL: http://arxiv.org/abs/2504.06658v1
- Date: Wed, 09 Apr 2025 07:48:10 GMT
- Title: A Neuro-inspired Interpretation of Unlearning in Large Language Models through Sample-level Unlearning Difficulty
- Authors: Xiaohua Feng, Yuyuan Li, Chengye Wang, Junlin Liu, Li Zhang, Chaochao Chen,
- Abstract summary: Existing studies assume a uniform unlearning difficulty across samples.<n>We propose a Memory Removal Difficulty ($mathrmMRD$) metric to quantify sample-level unlearning difficulty.<n>We also propose an $mathrmMRD$-based weighted sampling method to optimize existing unlearning algorithms.
- Score: 12.382999548648726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Driven by privacy protection laws and regulations, unlearning in Large Language Models (LLMs) is gaining increasing attention. However, current research often neglects the interpretability of the unlearning process, particularly concerning sample-level unlearning difficulty. Existing studies typically assume a uniform unlearning difficulty across samples. This simplification risks attributing the performance of unlearning algorithms to sample selection rather than the algorithm's design, potentially steering the development of LLM unlearning in the wrong direction. Thus, we investigate the relationship between LLM unlearning and sample characteristics, with a focus on unlearning difficulty. Drawing inspiration from neuroscience, we propose a Memory Removal Difficulty ($\mathrm{MRD}$) metric to quantify sample-level unlearning difficulty. Using $\mathrm{MRD}$, we analyze the characteristics of hard-to-unlearn versus easy-to-unlearn samples. Furthermore, we propose an $\mathrm{MRD}$-based weighted sampling method to optimize existing unlearning algorithms, which prioritizes easily forgettable samples, thereby improving unlearning efficiency and effectiveness. We validate the proposed metric and method using public benchmarks and datasets, with results confirming its effectiveness.
Related papers
- Unlearning in- vs. out-of-distribution data in LLMs under gradient-based method [31.268301764230525]
This work formalizes a metric to evaluate unlearning quality in generative models.
We use it to assess the trade-offs between unlearning quality and performance.
We further evaluate how example's memorization and difficulty affect unlearning under a classical gradient ascent-based approach.
arXiv Detail & Related papers (2024-11-07T03:02:09Z) - Machine Unlearning in Forgettability Sequence [22.497699136603877]
We identify key factor affecting unlearning difficulty and the performance of unlearning algorithms.
We propose a general unlearning framework, dubbed RSU, which consists of Ranking module and SeqUnlearn module.
arXiv Detail & Related papers (2024-10-09T01:12:07Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
This paper seeks to refine the evaluation of machine unlearning for large language models.<n>It addresses two key challenges -- the robustness of evaluation metrics and the trade-offs between competing goals.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Unlearnable Algorithms for In-context Learning [36.895152458323764]
In this paper, we focus on efficient unlearning methods for the task adaptation phase of a pretrained large language model.
We observe that an LLM's ability to do in-context learning for task adaptation allows for efficient exact unlearning of task adaptation training data.
We propose a new holistic measure of unlearning cost which accounts for varying inference costs.
arXiv Detail & Related papers (2024-02-01T16:43:04Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
This paper investigates how Active Learning algorithms can serve as effective demonstration selection methods for in-context learning.
We show that in-context example selection through AL prioritizes high-quality examples that exhibit low uncertainty and bear similarity to the test examples.
arXiv Detail & Related papers (2023-05-23T17:16:04Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process.
Our study introduces a novel model-based perspective: model sparsification via weight pruning.
We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner.
arXiv Detail & Related papers (2023-04-11T02:12:02Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2022-12-20T19:29:37Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
We study contrastive learning on the wearable-based activity recognition task.
This paper presents an open-source PyTorch library textttCL-HAR, which can serve as a practical tool for researchers.
arXiv Detail & Related papers (2022-02-12T06:10:15Z) - Adaptive neighborhood Metric learning [184.95321334661898]
We propose a novel distance metric learning algorithm, named adaptive neighborhood metric learning (ANML)
ANML can be used to learn both the linear and deep embeddings.
The emphlog-exp mean function proposed in our method gives a new perspective to review the deep metric learning methods.
arXiv Detail & Related papers (2022-01-20T17:26:37Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.