論文の概要: Defects in Silicon Carbide as Quantum Qubits: Recent Advances in Defect Engineering
- arxiv url: http://arxiv.org/abs/2504.06671v1
- Date: Wed, 09 Apr 2025 08:13:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 16:14:55.671856
- Title: Defects in Silicon Carbide as Quantum Qubits: Recent Advances in Defect Engineering
- Title(参考訳): 量子量子ビットとしての炭化ケイ素の欠陥:欠陥工学の最近の進歩
- Authors: Ivana Capan,
- Abstract要約: 本稿では,炭化ケイ素(SiC)の欠陥と量子量子ビットとしての可能性について概説する。
次に焦点はSiCの最も有望な欠陥、特にシリコン空孔(VSi)と空孔(VC-VSi)にシフトする。
照射, イオン注入, フェムト秒レーザー加工, 集束イオンビーム法など, 様々な製造技術が研究されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This review provides an overview of defects in silicon carbide (SiC) with potential applications as quantum qubits. It begins with a brief introduction to quantum qubits and existing qubit platforms, outlining the essential criteria a defect must meet to function as a viable qubit. The focus then shifts to the most promising defects in SiC, notably the silicon vacancy (VSi) and divacancy (VC-VSi). A key challenge in utilizing these defects for quantum applications is their precise and controllable creation. Various fabrication techniques, including irradiation, ion implantation, femtosecond laser processing, and focused ion beam methods, have been explored to create these defects. Designed as a beginner-friendly resource, this review aims to support early-career experimental researchers entering the field of SiC-related quantum qubits. Providing an introduction to defect-based qubits in SiC offers valuable insights into fabrication strategies, recent progress, and the challenges that lie ahead.
- Abstract(参考訳): 本稿では,炭化ケイ素(SiC)の欠陥と量子量子ビットとしての可能性について概説する。
量子量子ビットと既存の量子ビットプラットフォームへの簡単な導入から始まり、欠陥が実現可能な量子ビットとして機能するために満たされる必須条件の概要を概説する。
次に焦点はSiCの最も有望な欠陥、特にシリコン空孔(VSi)と空孔(VC-VSi)にシフトする。
これらの欠陥を量子アプリケーションに活用する上で重要な課題は、その正確かつ制御可能な生成である。
照射, イオン注入, フェムト秒レーザー加工, 集束イオンビーム法など, 様々な製造技術が研究されている。
初心者に優しい資源として設計されたこのレビューは、SiC関連量子量子ビットの分野に参入する早期キャリアの実験研究者を支援することを目的としている。
SiCにおける欠陥ベースのキュービットの導入は、製造戦略、最近の進歩、今後の課題に関する貴重な洞察を提供する。
関連論文リスト
- Discovery of T center-like quantum defects in silicon [2.5531148052301047]
量子技術は、単一光子エミッタやスピン光子インタフェースとして機能する高性能な量子欠陥の開発から恩恵を受ける。
シリコン基板上に置換した炭素((A-C)$rm _Si$)とA=B,Al,Ga,In,Tl)とを混合したIII族元素による一連の欠陥が発見された。
これらの欠陥は、シリコン((C-C-H)$rm_Si$)のよく知られたT中心と、構造的に、電子的に、化学的に類似しており、その光学的性質は、主に不対電子によって駆動される。
論文 参考訳(メタデータ) (2024-05-08T16:02:29Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
新しいQuantum Error Mitigation(QEM)技術では、Fizzy C-Meansクラスタリングを使用して測定エラーパターンを特定できる。
実 NISQ 5-qubit 量子プロセッサのサブセットとして得られた 2-qubit レジスタ上で,この手法の原理的検証を報告する。
我々は、FCMベースのQEM技術により、単一および2ビットゲートベースの量子回路の期待値が合理的に改善できることを実証した。
論文 参考訳(メタデータ) (2024-02-02T14:02:45Z) - Database of semiconductor point-defect properties for applications in
quantum technologies [54.17256385566032]
我々はダイヤモンド、炭化ケイ素、シリコンなど様々な半導体の5万点欠陥を計算した。
生成エネルギー,スピン特性,遷移双極子モーメント,ゼロフォノン線など,これらの欠陥の関連光学的および電子的特性を特徴付ける。
内在シリコンで安定な2331個の複合欠陥が検出され、光に輝く多くのスピン量子ビット候補と単一光子源を特定するためにフィルタされる。
論文 参考訳(メタデータ) (2023-03-28T19:51:08Z) - Midgap state requirements for optically active quantum defects [0.0]
光学活性量子欠陥は、量子センシング、計算、通信において重要な役割を果たす。
一般に、バンドギャップ内で、バンドエッジから遠く離れたレベルを導入する量子欠陥のみが量子技術にとって関心があると仮定される。
バンドエッジに近いエネルギー準位を持つ光学活性欠陥は、同様の特性を示すことができる。
論文 参考訳(メタデータ) (2023-02-21T16:07:04Z) - Quantum artificial vision for defect detection in manufacturing [0.0]
ノイズ中間スケール量子(NISQ)デバイスを用いた量子コンピュータビジョンのアルゴリズムについて検討する。
私たちはそれらを、彼らの古典的な問題に対する真の問題としてベンチマークします。
これは製造ラインにおける産業関連の問題に対する量子コンピュータビジョンシステムの最初の実装である。
論文 参考訳(メタデータ) (2022-08-09T18:30:23Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
超伝導量子回路は、主要な量子コンピューティングプラットフォームの一つである。
超伝導量子コンピューティングを実用上重要な点に進めるためには、デコヒーレンスに繋がる物質不完全性を特定し、対処することが重要である。
ここでは、テラヘルツ走査近接場光学顕微鏡を用いて、シリコン上の湿式エッチングアルミニウム共振器の局所誘電特性とキャリア濃度を調査する。
論文 参考訳(メタデータ) (2021-06-24T11:06:34Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
本稿では、電波トラップで閉じ込められた1本のイオン列をベースとした量子計算アーキテクチャにおけるクロストーク誤差の研究を行い、個別に調整されたレーザービームで操作する。
この種の誤差は、理想的には、異なるアクティブな量子ビットのセットで処理される単一量子ゲートと2量子ビットの量子ゲートが適用されている間は、未修正のままであるオブザーバー量子ビットに影響を及ぼす。
我々は,第1原理からクロストーク誤りを微視的にモデル化し,コヒーレント対非コヒーレントなエラーモデリングの重要性を示す詳細な研究を行い,ゲートレベルでクロストークを積極的に抑制するための戦略について議論する。
論文 参考訳(メタデータ) (2020-12-21T14:20:40Z) - Deterministic correction of qubit loss [48.43720700248091]
量子ビットの損失は、大規模かつフォールトトレラントな量子情報プロセッサに対する根本的な障害の1つである。
トポロジカル曲面符号の最小インスタンスに対して、量子ビット損失検出と補正の完全なサイクルの実装を実験的に実証した。
論文 参考訳(メタデータ) (2020-02-21T19:48:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。