Kerr enhanced optomechanical entanglement via reservoir design
- URL: http://arxiv.org/abs/2504.06696v1
- Date: Wed, 09 Apr 2025 08:55:12 GMT
- Title: Kerr enhanced optomechanical entanglement via reservoir design
- Authors: Yan Li, Cheng Liu, Yu-Hong Liu, Yue-Hui Zhou, Jie-Qiao Liao,
- Abstract summary: We propose a method to enhance optomechanical entanglement by introducing an optical Kerr nonlinear medium.<n>We focus on the entanglement generation in the single stable regime of the system.<n>It is found that the presence of the Kerr nonlinearity allows the generation of optomechanical entanglement even when the thermal phonon occupation of the mechanical bath is as high as 3000.
- Score: 6.621144136049436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum entanglement is a crucial resource in quantum technologies, enabling advancements in quantum computing, quantum communication, and quantum precision measurement. Here, we propose a method to enhance optomechanical entanglement by introducing an optical Kerr nonlinear medium and a squeezed vacuum reservoir of the optomechanical cavity. By performing the displacement and squeezing transformations, the system can be reduced to a standard linearized optomechanical system with normalized driving detuning and linearized-coupling strength, in which the optical and mechanical modes are, respectively, coupled to an optical vacuum bath and a mechanical heat bath. We focus on the entanglement generation in the single stable regime of the system. By evaluating the steady-state logarithm negativity, we find that the optomechanical entanglement can be enhanced within a wide range of the Kerr constant. In addition, the Kerr nonlinearity can extend the stable region, enabling considerable entanglement generation in the blue sideband-parameter region. We also investigate the dependence of the entanglement generation on the average thermal phonon occupation of the mechanical bath and the optical driving amplitude. It is found that the presence of the Kerr nonlinearity allows the generation of optomechanical entanglement even when the thermal phonon occupation of the mechanical bath is as high as 3000. Our findings will provide valuable insights into enhancing fragile quantum resources in quantum systems.
Related papers
- Nonclassical microwave radiation from the parametric dynamical Casimir effect in the reversed-dissipation regime of circuit optomechanics [0.0]
We propose an experimentally feasible optomechanical system that is dispersively driven and operates in the reversed dissipation regime (RDR)<n>Fast-time modulation of the driving laser frequency-on time scales longer than the mechanical decoherence time-allows for adiabatic elimination of the mechanical mode.<n>The proposed nonclassical microwave radiation source possesses the potential to be applied in quantum information processing, quantum computing and microwave quantum sensing.
arXiv Detail & Related papers (2025-08-01T06:36:05Z) - A machine learning based approach to the identification of spectral densities in quantum open systems [39.58317527488534]
We present a machine learning-based approach for characterising the environment that affects the dynamics of an open quantum system.<n>We focus on the case of an exactly solvable spin-boson model, where the system-environment interaction, whose strength is encoded in the spectral density, induces pure dephasing.
arXiv Detail & Related papers (2025-07-18T08:23:15Z) - Tunable anharmonicity in cavity optomechanics in the unresolved sideband regime [0.0]
We present a theory that predicts the measurable signatures left by the mechanical anharmonicity.<n>In particular, we obtain analytically and numerically the mechanical displacement spectrum, and explore the imprints of the mechanical anharmonicity on the cavity light field.
arXiv Detail & Related papers (2025-01-15T16:21:21Z) - Cavity-Quantum Electrodynamics with Moiré Flatband Photonic Crystals [35.119260614523256]
A quantum dot can be tuned by a factor of 40, ranging from 42 ps to 1692 ps, which is attributed to strong Purcell enhancement and Purcell inhibition effects.
Our findings pave the way for moir'e flatband cavity-enhanced quantum light sources, quantum optical switches, and quantum nodes for quantum internet applications.
arXiv Detail & Related papers (2024-11-25T18:52:11Z) - Reservoir-engineered two-mode squeezing in an optomechanical cavity [0.0]
We propose a scheme that optimize entanglement in nanomechanical resonators through quantum state transfer of squeezed fields assisted by radiation pressure.<n>The system is driven by red-detuned laser fields, which enable simultaneous cooling of the mechanical resonators.
arXiv Detail & Related papers (2024-10-20T09:37:30Z) - Strong coupling at room temperature with a centimeter-scale quartz crystal [0.0]
We report an optomechanical system with independent control over pumping power and frequency detuning to achieve and characterize the strong-coupling regime of a bulk acoustic-wave resonator.
Our results provide valuable insights into the performances of room-temperature macroscopic mechanical systems and their applications in hybrid quantum devices.
arXiv Detail & Related papers (2024-05-28T12:15:05Z) - Coherent Control of an Optical Quantum Dot Using Phonons and Photons [5.1635749330879905]
We describe unique features and advantages of optical two-level systems, or qubits, for optomechanics.
The qubit state can be coherently controlled using both phonons and resonant or detuned photons.
Time-correlated single-photon counting measurements reveal the control of QD population dynamics.
arXiv Detail & Related papers (2024-04-02T16:25:35Z) - Computational supremacy in quantum simulation [22.596358764113624]
We show that superconducting quantum annealing processors can generate samples in close agreement with solutions of the Schr"odinger equation.
We conclude that no known approach can achieve the same accuracy as the quantum annealer within a reasonable timeframe.
arXiv Detail & Related papers (2024-03-01T19:00:04Z) - In-situ-tunable spin-spin interactions in a Penning trap with in-bore
optomechanics [41.94295877935867]
We present an optomechanical system for in-situ tuning of the coherent spin-motion and spin-spin interaction strength.
We characterize the system using measurements of the induced mean-field spin precession.
These experiments show approximately a $times2$ variation in the ratio of the coherent to incoherent interaction strength.
arXiv Detail & Related papers (2024-01-31T11:00:39Z) - Tripartite quantum entanglement with squeezed optomechanics [3.1938039621723724]
We propose how to achieve coherent manipulation and enhancement of quantum entanglement in a hybrid optomechanical system.
The advantages of this system are twofold: (i) one can effectively regulate the light-mirror interactions by introducing a squeezed intracavity mode via the OPA; (ii) when properly matching the squeezing parameters between the squeezed cavity mode and the injected squeezed vacuum reservoir, the optical input noises can be suppressed completely.
arXiv Detail & Related papers (2023-11-20T02:00:17Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Hybrid coupling optomechanically assisted nonreciprocal photon blockade [5.472101264158104]
dissipation coupling of hybrid dissipation and dispersion optomechanical system can induce the coupling between the environment and system.
Cross-Kerr coupling can also be used in a more widely region in quantum information processing and quantum simulation.
arXiv Detail & Related papers (2020-11-30T00:40:28Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Optimal non-classical correlations of light with a levitated nano-sphere [34.82692226532414]
Nonclassical correlations provide a resource for many applications in quantum technology.
Optomechanical systems can generate nonclassical correlations between the mechanical mode and a mode of travelling light.
We propose automated optimization of the production of quantum correlations in such a system.
arXiv Detail & Related papers (2020-06-26T15:27:47Z) - Beyond linear coupling in microwave optomechanics [0.0]
We analyze the results in the framework of an extended nonlinear optomechanical theory.
No thermo-optical instabilities are observed, in contrast with laser-driven systems.
We find that the motion imprints a wide comb of extremely narrow peaks in the microwave output field.
arXiv Detail & Related papers (2020-03-06T13:12:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.