論文の概要: End2end-ALARA: Approaching the ALARA Law in CT Imaging with End-to-end Learning
- arxiv url: http://arxiv.org/abs/2504.06777v1
- Date: Wed, 09 Apr 2025 10:57:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:06:16.843850
- Title: End2end-ALARA: Approaching the ALARA Law in CT Imaging with End-to-end Learning
- Title(参考訳): End2end-ALARA: エンドツーエンド学習による画像診断におけるALARA法へのアプローチ
- Authors: Xi Tao, Liyan Lin,
- Abstract要約: CTイメージングを行うためのコンセンサスとしては、放射線線量(ALARA法則)を適度に低くすることが挙げられる。
本稿では,エンド・ツー・エンドの学習フレームワークであるEnd2end-ALARAを提案する。
- 参考スコア(独自算出の注目度): 3.2419493716098926
- License:
- Abstract: Computed tomography (CT) examination poses radiation injury to patient. A consensus performing CT imaging is to make the radiation dose as low as reasonably achievable, i.e. the ALARA law. In this paper, we propose an end-to-end learning framework, named End2end-ALARA, that jointly optimizes dose modulation and image reconstruction to meet the goal of ALARA in CT imaging. End2end-ALARA works by building a dose modulation module and an image reconstruction module, connecting these modules with a differentiable simulation function, and optimizing the them with a constrained hinge loss function. The objective is to minimize radiation dose subject to a prescribed image quality (IQ) index. The results show that End2end-ALARA is able to preset personalized dose levels to gain a stable IQ level across patients, which may facilitate image-based diagnosis and downstream model training. Moreover, compared to fixed-dose and conventional dose modulation strategies, End2end-ALARA consumes lower dose to reach the same IQ level. Our study sheds light on a way of realizing the ALARA law in CT imaging.
- Abstract(参考訳): CT検査は患者に放射線損傷を与える。
CTイメージングを行うためのコンセンサスとしては、放射線線量(ALARA法則)を適度に低くすることが挙げられる。
本稿では, 画像診断におけるALARAの目的を満たすために, 線量変調と画像再構成を共同で最適化するエンドツーエンド学習フレームワークであるEnd2end-ALARAを提案する。
End2end-ALARAは、線量変調モジュールと画像再構成モジュールを構築し、これらのモジュールを微分可能なシミュレーション関数で接続し、制約付きヒンジ損失関数でそれらを最適化することで機能する。
目的は、所定の画像品質(IQ)指数に基づく放射線線量を最小限にすることである。
以上の結果から,End2end-ALARAは,画像診断や下流モデルトレーニングを容易にするため,患者間で安定したIQレベルを得るために,パーソナライズド線量レベルを予め設定できることが示唆された。
さらに、固定線量および従来の線量調節戦略と比較して、End2end-ALARAは、同じIQレベルに達するために低線量を使用する。
本研究は, 画像診断におけるALARA法則の実現に光を当てた。
関連論文リスト
- Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
ニュージーランドの臨床試験において,PCCT画像の半減量と2倍の速度で再現する深層学習に基づくアプローチを提案する。
本稿では,GPUメモリの制限を緩和するパッチベースのボリュームリファインメントネットワーク,合成データを用いたトレーニングネットワーク,およびモデルベースの反復リファインメントを用いて,合成データと実世界のギャップを埋める。
論文 参考訳(メタデータ) (2024-03-19T00:07:48Z) - WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
我々は, NDCTデータのみを用いて, WIA-LD2NDと呼ばれる新しい自己監督型CT画像復調法を提案する。
WIA-LD2ND は Wavelet-based Image Alignment (WIA) と Frequency-Aware Multi-scale Loss (FAM) の2つのモジュールから構成される。
論文 参考訳(メタデータ) (2024-03-18T11:20:11Z) - Gadolinium dose reduction for brain MRI using conditional deep learning [66.99830668082234]
これらの手法の主な課題は、コントラスト強調の正確な予測と現実的な画像の合成である。
コントラスト前の画像対とコントラスト後の画像対のサブトラクション画像に符号化されたコントラスト信号を利用することで、両課題に対処する。
各種スキャナー,フィールド強度,コントラストエージェントを用いた合成および実データに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-03-06T08:35:29Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - Exploring contrast generalisation in deep learning-based brain MRI-to-CT
synthesis [0.0]
MRIプロトコルは、経時的に変化するか、または低品質のsCTをもたらすセンターによって異なる可能性がある。
ドメインランダム化(DR)は、脳sCT生成のためのDLモデルの一般化を増大させる。
論文 参考訳(メタデータ) (2023-03-17T18:45:05Z) - Diffusion Denoising for Low-Dose-CT Model [0.0]
本研究では,条件付きサンプリングを用いたノイズフリーCT画像を生成するDDLMと呼ばれるDNOising Diffusion LDCTモデルを提案する。
LDCT画像を用いた実験では,他の最先端手法よりも少ない推論時間を用いてDDLMの同等の性能を示した。
論文 参考訳(メタデータ) (2023-01-27T01:11:42Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - Total-Body Low-Dose CT Image Denoising using Prior Knowledge Transfer
Technique with Contrastive Regularization Mechanism [4.998352078907441]
放射線線量が少ないと、ノイズやアーティファクトが増加し、臨床診断に大きな影響を及ぼす可能性がある。
高品質な全身低線量CT(LDCT)画像を得るため,従来の深層学習に基づく研究は様々なネットワークアーキテクチャを導入している。
本稿では,NDCT画像から抽出した知識を活用する,新しいタスク内知識伝達手法を提案する。
論文 参考訳(メタデータ) (2021-12-01T06:46:38Z) - Label-Free Segmentation of COVID-19 Lesions in Lung CT [17.639558085838583]
ピクセルレベルの異常モデルを用いて,CTで新型コロナウイルスの病変を分類するためのラベルフリーアプローチを提案する。
我々のモデリングは、気管と血管の一部が、病変が属する高強度範囲にあり、強いパターンを示すという観察に着想を得たものである。
実験では,NormNetの有効性を3つの異なるデータセットで検証した。
論文 参考訳(メタデータ) (2020-09-08T12:38:34Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。