CHIME: A Compressive Framework for Holistic Interest Modeling
- URL: http://arxiv.org/abs/2504.06780v1
- Date: Wed, 09 Apr 2025 11:08:49 GMT
- Title: CHIME: A Compressive Framework for Holistic Interest Modeling
- Authors: Yong Bai, Rui Xiang, Kaiyuan Li, Yongxiang Tang, Yanhua Cheng, Xialong Liu, Peng Jiang, Kun Gai,
- Abstract summary: We propose CHIME: A Compressive Framework for Holistic Interest Modeling.<n>It uses adapted large language models to encode complete user behaviors with heterogeneous inputs.<n>ChiME demonstrates superior ranking performance across diverse datasets.
- Score: 15.818669767036592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling holistic user interests is important for improving recommendation systems but is challenged by high computational cost and difficulty in handling diverse information with full behavior context. Existing search-based methods might lose critical signals during behavior selection. To overcome these limitations, we propose CHIME: A Compressive Framework for Holistic Interest Modeling. It uses adapted large language models to encode complete user behaviors with heterogeneous inputs. We introduce multi-granular contrastive learning objectives to capture both persistent and transient interest patterns and apply residual vector quantization to generate compact embeddings. CHIME demonstrates superior ranking performance across diverse datasets, establishing a robust solution for scalable holistic interest modeling in recommendation systems.
Related papers
- Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
We investigate how model size, training data scale, and inference-time compute jointly influence generative retrieval performance.<n>Our experiments show that n-gram-based methods demonstrate strong alignment with both training and inference scaling laws.<n>We find that LLaMA models consistently outperform T5 models, suggesting a particular advantage for larger decoder-only models in generative retrieval.
arXiv Detail & Related papers (2025-03-24T17:59:03Z) - ShuffleGate: An Efficient and Self-Polarizing Feature Selection Method for Large-Scale Deep Models in Industry [12.690406065558394]
ShuffleGate shuffles all feature values across instances simultaneously.
It can generate well-separated feature importance scores and estimate the performance without retraining the model.
It has been successfully integrated into the daily iteration of Bilibili's search models across various scenarios.
arXiv Detail & Related papers (2025-03-12T12:05:03Z) - A Recommendation Model Utilizing Separation Embedding and Self-Attention for Feature Mining [7.523158123940574]
Recommendation systems provide users with content that meets their needs.
Traditional click-through rate prediction and TOP-K recommendation mechanisms are unable to meet the recommendations needs.
This paper proposes a recommendations system model based on a separation embedding cross-network.
arXiv Detail & Related papers (2024-10-19T07:49:21Z) - Restore Anything Model via Efficient Degradation Adaptation [129.38475243424563]
RAM takes a unified path that leverages inherent similarities across various degradations to enable efficient and comprehensive restoration.<n> RAM's SOTA performance confirms RAM's SOTA performance, reducing model complexity by approximately 82% in trainable parameters and 85% in FLOPs.
arXiv Detail & Related papers (2024-07-18T10:26:53Z) - SynerGraph: An Integrated Graph Convolution Network for Multimodal Recommendation [1.3812010983144802]
This article presents a novel approach to multimodal recommendation systems, focusing on integrating and purifying multimodal data.
We developed a filter to remove noise from various types of data, making the recommendations more reliable.
We studied the impact of top-K sparsification on different datasets, finding optimal values that strike a balance between underfitting and overfitting concerns.
arXiv Detail & Related papers (2024-05-29T12:18:32Z) - InfoRM: Mitigating Reward Hacking in RLHF via Information-Theoretic Reward Modeling [66.3072381478251]
Reward hacking, also termed reward overoptimization, remains a critical challenge.
We propose a framework for reward modeling, namely InfoRM, by introducing a variational information bottleneck objective.
We show that InfoRM's overoptimization detection mechanism is not only effective but also robust across a broad range of datasets.
arXiv Detail & Related papers (2024-02-14T17:49:07Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Evaluating Concurrent Robustness of Language Models Across Diverse Challenge Sets [46.19529338280716]
Language models, characterized by their black-box nature, often hallucinate and display sensitivity to input perturbations.
We introduce a methodology designed to examine how input perturbations affect language models across various scales.
We present three distinct fine-tuning strategies to address robustness against multiple perturbations.
arXiv Detail & Related papers (2023-11-15T02:59:10Z) - Bottlenecks CLUB: Unifying Information-Theoretic Trade-offs Among
Complexity, Leakage, and Utility [8.782250973555026]
Bottleneck problems are an important class of optimization problems that have recently gained increasing attention in the domain of machine learning and information theory.
We propose a general family of optimization problems, termed as complexity-leakage-utility bottleneck (CLUB) model.
We show that the CLUB model generalizes all these problems as well as most other information-theoretic privacy models.
arXiv Detail & Related papers (2022-07-11T14:07:48Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Adaptive Discrete Communication Bottlenecks with Dynamic Vector
Quantization [76.68866368409216]
We propose learning to dynamically select discretization tightness conditioned on inputs.
We show that dynamically varying tightness in communication bottlenecks can improve model performance on visual reasoning and reinforcement learning tasks.
arXiv Detail & Related papers (2022-02-02T23:54:26Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.