Compound and Parallel Modes of Tropical Convolutional Neural Networks
- URL: http://arxiv.org/abs/2504.06881v1
- Date: Wed, 09 Apr 2025 13:36:11 GMT
- Title: Compound and Parallel Modes of Tropical Convolutional Neural Networks
- Authors: Mingbo Li, Liying Liu, Ye Luo,
- Abstract summary: tropical convolutional neural networks (TCNNs) reduce multiplications, but underperform compared to standard CNNs.<n>We propose two new variants - compound TCNN (cTCNN) and parallel TCNN (pTCNN)<n> Experiments on various datasets show that cTCNN and pTCNN match or exceed the performance of other CNN methods.
- Score: 2.851415653352522
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural networks have become increasingly deep and complex, leading to higher computational costs. While tropical convolutional neural networks (TCNNs) reduce multiplications, they underperform compared to standard CNNs. To address this, we propose two new variants - compound TCNN (cTCNN) and parallel TCNN (pTCNN)-that use combinations of tropical min-plus and max-plus kernels to replace traditional convolution kernels. This reduces multiplications and balances efficiency with performance. Experiments on various datasets show that cTCNN and pTCNN match or exceed the performance of other CNN methods. Combining these with conventional CNNs in deeper architectures also improves performance. We are further exploring simplified TCNN architectures that reduce parameters and multiplications with minimal accuracy loss, aiming for efficient and effective models.
Related papers
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.<n>A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.<n>The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Resource Constrained Model Compression via Minimax Optimization for
Spiking Neural Networks [11.19282454437627]
Spiking Neural Networks (SNNs) have the characteristics of event-driven and high energy-efficient networks.
It is difficult to deploy these networks on resource-limited edge devices directly.
We propose an improved end-to-end Minimax optimization method for this sparse learning problem.
arXiv Detail & Related papers (2023-08-09T02:50:15Z) - Exploiting Low-Rank Tensor-Train Deep Neural Networks Based on
Riemannian Gradient Descent With Illustrations of Speech Processing [74.31472195046099]
We exploit a low-rank tensor-train deep neural network (TT-DNN) to build an end-to-end deep learning pipeline, namely LR-TT-DNN.
A hybrid model combining LR-TT-DNN with a convolutional neural network (CNN) is set up to boost the performance.
Our empirical evidence demonstrates that the LR-TT-DNN and CNN+(LR-TT-DNN) models with fewer model parameters can outperform the TT-DNN and CNN+(LR-TT-DNN) counterparts.
arXiv Detail & Related papers (2022-03-11T15:55:34Z) - Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking
Neural Networks? [3.2108350580418166]
Spiking neural networks (SNNs) operate via binary spikes distributed over time.
SOTA training strategies for SNNs involve conversion from a non-spiking deep neural network (DNN)
We propose a new training algorithm that accurately captures these distributions, minimizing the error between the DNN and converted SNN.
arXiv Detail & Related papers (2021-12-22T18:47:45Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNNs) are a new type of binary quantization design tailored to compress and accelerate BNNs.
SNNs are trained with a kernel-aware optimization framework, which exploits binary quantization in the fine-grained convolutional kernel space.
Experiments on visual recognition benchmarks and the hardware deployment on FPGA validate the great potentials of SNNs.
arXiv Detail & Related papers (2021-10-18T11:30:29Z) - An Alternative Practice of Tropical Convolution to Traditional
Convolutional Neural Networks [0.5837881923712392]
We propose a new type of CNNs called Tropical Convolutional Neural Networks (TCNNs)
TCNNs are built on tropical convolutions in which the multiplications and additions in conventional convolutional layers are replaced by additions and min/max operations respectively.
We show that TCNN can achieve higher expressive power than ordinary convolutional layers on the MNIST and CIFAR10 image data set.
arXiv Detail & Related papers (2021-03-03T00:13:30Z) - Optimal Conversion of Conventional Artificial Neural Networks to Spiking
Neural Networks [0.0]
Spiking neural networks (SNNs) are biology-inspired artificial neural networks (ANNs)
We propose a novel strategic pipeline that transfers the weights to the target SNN by combining threshold balance and soft-reset mechanisms.
Our method is promising to get implanted onto embedded platforms with better support of SNNs with limited energy and memory.
arXiv Detail & Related papers (2021-02-28T12:04:22Z) - Block-term Tensor Neural Networks [29.442026567710435]
We show that block-term tensor layers (BT-layers) can be easily adapted to neural network models, such as CNNs and RNNs.
BT-layers in CNNs and RNNs can achieve a very large compression ratio on the number of parameters while preserving or improving the representation power of the original DNNs.
arXiv Detail & Related papers (2020-10-10T09:58:43Z) - ACDC: Weight Sharing in Atom-Coefficient Decomposed Convolution [57.635467829558664]
We introduce a structural regularization across convolutional kernels in a CNN.
We show that CNNs now maintain performance with dramatic reduction in parameters and computations.
arXiv Detail & Related papers (2020-09-04T20:41:47Z) - FATNN: Fast and Accurate Ternary Neural Networks [89.07796377047619]
Ternary Neural Networks (TNNs) have received much attention due to being potentially orders of magnitude faster in inference, as well as more power efficient, than full-precision counterparts.
In this work, we show that, under some mild constraints, computational complexity of the ternary inner product can be reduced by a factor of 2.
We elaborately design an implementation-dependent ternary quantization algorithm to mitigate the performance gap.
arXiv Detail & Related papers (2020-08-12T04:26:18Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
We show a ResNet-type CNN can attain the minimax optimal error rates in important function classes.
We derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H"older classes.
arXiv Detail & Related papers (2019-03-24T19:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.