論文の概要: S-EO: A Large-Scale Dataset for Geometry-Aware Shadow Detection in Remote Sensing Applications
- arxiv url: http://arxiv.org/abs/2504.06920v1
- Date: Wed, 09 Apr 2025 14:25:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:06:09.242363
- Title: S-EO: A Large-Scale Dataset for Geometry-Aware Shadow Detection in Remote Sensing Applications
- Title(参考訳): S-EO:リモートセンシングアプリケーションにおける幾何認識影検出のための大規模データセット
- Authors: Masquil Elías, Marí Roger, Ehret Thibaud, Meinhardt-Llopis Enric, Musé Pablo, Facciolo Gabriele,
- Abstract要約: S-EOデータセットは、ジオメトリ対応のシャドウ検出を前進させるために設計された、大規模で高解像度のデータセットである。
データセットは米国全体で702個の測地タイルで構成され、それぞれ500×500mをカバーしている。
各画像に対して、幾何と太陽の位置から派生した影マスク、NDVI指数に基づく植生マスク、バンドル調整RPCモデルを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We introduce the S-EO dataset: a large-scale, high-resolution dataset, designed to advance geometry-aware shadow detection. Collected from diverse public-domain sources, including challenge datasets and government providers such as USGS, our dataset comprises 702 georeferenced tiles across the USA, each covering 500x500 m. Each tile includes multi-date, multi-angle WorldView-3 pansharpened RGB images, panchromatic images, and a ground-truth DSM of the area obtained from LiDAR scans. For each image, we provide a shadow mask derived from geometry and sun position, a vegetation mask based on the NDVI index, and a bundle-adjusted RPC model. With approximately 20,000 images, the S-EO dataset establishes a new public resource for shadow detection in remote sensing imagery and its applications to 3D reconstruction. To demonstrate the dataset's impact, we train and evaluate a shadow detector, showcasing its ability to generalize, even to aerial images. Finally, we extend EO-NeRF - a state-of-the-art NeRF approach for satellite imagery - to leverage our shadow predictions for improved 3D reconstructions.
- Abstract(参考訳): 本稿では,S-EOデータセットを紹介する。S-EOデータセットは大規模で高解像度なデータセットで,幾何認識による影検出の高速化を目的としている。
チャレンジデータセットやUSGSなどの政府提供者を含む、さまざまなパブリックドメインソースから収集されたデータセットは、米国全体で702個のジオリファレンスタイルで構成され、それぞれ500×500mをカバーしています。
各タイルには、マルチ日付、マルチ角度のWorldView-3パンシャーペン画像、パンクロマチック画像、LiDARスキャンから得られた領域の地上構造DSMが含まれている。
各画像に対して、幾何と太陽の位置から派生した影マスク、NDVI指数に基づく植生マスク、バンドル調整RPCモデルを提供する。
約2万枚の画像を用いて、S-EOデータセットは、リモートセンシング画像における影検出のための新しい公開リソースと、その3D再構成への応用を確立する。
データセットの影響を実証するため、影検出器の訓練と評価を行い、空中画像に対してもその一般化能力を示す。
最後に、衛星画像のための最先端のNeRFアプローチであるEO-NeRFを拡張して、影の予測を利用して3D再構成を改善する。
関連論文リスト
- EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision [72.84868704100595]
本稿では,地球モニタリングタスクにおける深層学習アプリケーションを強化することを目的とした,リモートセンシングデータの自己監督を目的としたデータセットを提案する。
このデータセットは15テラピクセルのグローバルリモートセンシングデータにまたがっており、NEON、Sentinel、Satellogicによる1mの空間解像度データの新たなリリースなど、さまざまなソースの画像を組み合わせている。
このデータセットは、リモートセンシングデータの異なる課題に取り組むために開発されたMasked Autoencoderである。
論文 参考訳(メタデータ) (2025-01-14T13:42:22Z) - Shape2.5D: A Dataset of Texture-less Surfaces for Depth and Normals Estimation [12.757150641117077]
シェープ2.5Dは、このギャップに対処するために設計された、新しい大規模データセットである。
提案するデータセットは、3Dモデリングソフトウェアでレンダリングされた合成画像を含む。
また、深度カメラで撮影される4,672フレームからなる現実世界のサブセットも含まれている。
論文 参考訳(メタデータ) (2024-06-22T12:24:49Z) - GauU-Scene V2: Assessing the Reliability of Image-Based Metrics with Expansive Lidar Image Dataset Using 3DGS and NeRF [2.4673377627220323]
本稿では,新しい3次元表現手法を用いたマルチモーダルな大規模シーン再構築ベンチマークを提案する。
GauU-Sceneは6.5平方キロメートル以上をカバーし、LiDARの地上真実と組み合わせた総合的なRGBデータセットを備えている。
ドローンによるデータセットのためのLiDARおよび画像アライメント手法を最初に提案する。
論文 参考訳(メタデータ) (2024-04-07T08:51:31Z) - An evaluation of Deep Learning based stereo dense matching dataset shift
from aerial images and a large scale stereo dataset [2.048226951354646]
そこで本研究では,光検出・ランドング(LiDAR)と画像から直接地中不均質マップを生成する手法を提案する。
多様なシーンタイプ、画像解像度、幾何学的構成を持つデータセット間の11の密マッチング手法を評価した。
論文 参考訳(メタデータ) (2024-02-19T20:33:46Z) - Building Height Prediction with Instance Segmentation [0.0]
本稿では, 一つのRGB衛星画像からビルディングマスクを推定するために, ケースセグメンテーションに基づくビルディング高さ抽出手法を提案する。
我々は,移動学習手法を用いたオープンソースの衛星データセットとともに,特定の都市の標高アノテーションを組み込んだ衛星画像を用いた。
我々は,テストセット内の各高さクラスに属する建物の平均精度を70%とし,境界箱mAP 59,マスクmAP 52.6に到達した。
論文 参考訳(メタデータ) (2022-12-19T07:12:49Z) - A benchmark dataset for deep learning-based airplane detection: HRPlanes [3.5297361401370044]
Google Earth(GE)の画像を用いて,高分解能平面(HRPlanes)と呼ばれる新しい航空機検出データセットを作成する。
HRPlanは、様々な衛星から得られた様々な地形、季節、衛星の幾何学的条件を表すために、世界中の様々な空港のGE画像を含む。
予備的な結果から,提案したデータセットは将来のアプリケーションに有用なデータソースとベンチマークデータセットとなる可能性が示唆された。
論文 参考訳(メタデータ) (2022-04-22T23:49:44Z) - Enhancement of Novel View Synthesis Using Omnidirectional Image
Completion [61.78187618370681]
ニューラルレイディアンス場(NeRF)に基づく1枚の360度RGB-D画像から新しいビューを合成する方法を提案する。
実験により,提案手法は実世界と実世界の両方でシーンの特徴を保ちながら,可塑性な新規なビューを合成できることが実証された。
論文 参考訳(メタデータ) (2022-03-18T13:49:25Z) - Multi-sensor large-scale dataset for multi-view 3D reconstruction [63.59401680137808]
マルチビュー3次元表面再構成のための新しいマルチセンサデータセットを提案する。
スマートフォン、Intel RealSense、Microsoft Kinect、産業用カメラ、構造化光スキャナーなどだ。
14の照明条件下で100方向から取得した107の異なるシーンの約1.4万枚の画像を提供する。
論文 参考訳(メタデータ) (2022-03-11T17:32:27Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
多視点測光ステレオ問題(MVPS)に対する現代的な解法を提案する。
我々は、光度ステレオ(PS)画像形成モデルを用いて表面配向を取得し、それを多視点のニューラルラディアンス場表現とブレンドして物体の表面形状を復元する。
本手法は,多視点画像のニューラルレンダリングを行い,深部光度ステレオネットワークによって推定される表面の正規性を活用している。
論文 参考訳(メタデータ) (2021-10-11T20:20:03Z) - Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD
Images [69.5662419067878]
RGBD画像における接地参照表現は新たな分野である。
本稿では,参照する物体が閉塞により部分的にスキャンされる場合が多い単視点rgbd画像における3次元視覚グランド化の新たな課題を提案する。
提案手法はまず,RGBD画像内の関連領域をローカライズするヒートマップを生成するために,下層の言語と視覚的特徴を融合させる。
次に、ヒートマップに基づく適応的特徴学習を行い、他のビジオ言語融合とオブジェクトレベルのマッチングを行い、最後に参照したオブジェクトを接地する。
論文 参考訳(メタデータ) (2021-03-14T11:18:50Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
本稿では,任意の物体の高品質な形状と複雑な空間変化を持つBRDFを再構成する学習に基づく新しい手法を提案する。
まず、深層多視点ステレオネットワークを用いて、ビューごとの深度マップを推定する。
これらの深度マップは、異なるビューを粗く整列するために使用される。
本稿では,新しい多視点反射率推定ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-27T21:28:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。