GLT hidden structures in mean-field quantum spin systems
- URL: http://arxiv.org/abs/2504.06951v2
- Date: Mon, 14 Apr 2025 06:44:04 GMT
- Title: GLT hidden structures in mean-field quantum spin systems
- Authors: Christiaan J. F. van de Ven, Muhammad Faisal Khan, S. Serra-Capizzano,
- Abstract summary: This work explores structured matrix sequences arising in mean-field quantum spin systems.<n>We express these sequences within the framework of generalized locally Toeplitz (GLT) $*$-algebras.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work explores structured matrix sequences arising in mean-field quantum spin systems. We express these sequences within the framework of generalized locally Toeplitz (GLT) $*$-algebras, leveraging the fact that each GLT matrix sequence has a unique GLT symbol. This symbol characterizes both the asymptotic singular value distribution and, for Hermitian or quasi-Hermitian sequences, the asymptotic spectral distribution. Specifically, we analyze two cases of real symmetric matrix sequences stemming from mean-field quantum spin systems and determine their associated distributions using GLT theory. Our study concludes with visualizations and numerical tests that validate the theoretical findings, followed by a discussion of open problems and future directions.
Related papers
- Statistics of the Random Matrix Spectral Form Factor [0.0]
We identify the form factor statistics to next leading order in a $D-1$ expansion.<n>Our findings fully agree with numerics.<n>They are presented in a pedagogical way, highlighting new pathways in the study of statistical signatures at next leading order.
arXiv Detail & Related papers (2025-03-27T11:34:12Z) - Simulating NMR Spectra with a Quantum Computer [49.1574468325115]
This paper provides a formalization of the complete procedure of the simulation of a spin system's NMR spectrum.
We also explain how to diagonalize the Hamiltonian matrix with a quantum computer, thus enhancing the overall process's performance.
arXiv Detail & Related papers (2024-10-28T08:43:40Z) - Eigenstate Correlations in Dual-Unitary Quantum Circuits: Partial Spectral Form Factor [0.0]
Analytic insights into eigenstate correlations can be obtained by the recently introduced partial spectral form factor.<n>We study the partial spectral form factor in chaotic dual-unitary quantum circuits in the thermodynamic limit.
arXiv Detail & Related papers (2024-07-29T12:02:24Z) - Tensor product random matrix theory [39.58317527488534]
We introduce a real-time field theory approach to the evolution of correlated quantum systems.
We describe the full range of such crossover dynamics, from initial product states to a maximum entropy ergodic state.
arXiv Detail & Related papers (2024-04-16T21:40:57Z) - Structural Stability Hypothesis of Dual Unitary Quantum Chaos [0.0]
spectral correlations over small enough energy scales are described by random matrix theory.
We consider fate of this property when moving from dual-unitary to generic quantum circuits.
arXiv Detail & Related papers (2024-02-29T12:25:29Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Three-fold way of entanglement dynamics in monitored quantum circuits [68.8204255655161]
We investigate the measurement-induced entanglement transition in quantum circuits built upon Dyson's three circular ensembles.
We obtain insights into the interplay between the local entanglement generation by the gates and the entanglement reduction by the measurements.
arXiv Detail & Related papers (2022-01-28T17:21:15Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Dissipative quantum dynamics, phase transitions and non-Hermitian random
matrices [0.0]
We work in the framework of the dissipative Dicke model which is archetypal of symmetry-breaking phase transitions in open quantum systems.
We establish that the Liouvillian describing the quantum dynamics exhibits distinct spectral features of integrable and chaotic character.
Our approach can be readily adapted for classifying the nature of quantum dynamics across dissipative critical points in other open quantum systems.
arXiv Detail & Related papers (2021-12-10T19:00:01Z) - Random Matrix Theory of the Isospectral twirling [0.0]
We compute the Isospectral twirling of several classes of important quantities in the analysis of quantum many-body systems.
We show how these quantities clearly separate chaotic quantum dynamics from non chaotic ones.
arXiv Detail & Related papers (2020-12-14T16:29:15Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.