論文の概要: RayFronts: Open-Set Semantic Ray Frontiers for Online Scene Understanding and Exploration
- arxiv url: http://arxiv.org/abs/2504.06994v1
- Date: Wed, 09 Apr 2025 16:06:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:33:16.073342
- Title: RayFronts: Open-Set Semantic Ray Frontiers for Online Scene Understanding and Exploration
- Title(参考訳): RayFronts: オンラインシーン理解と探索のためのオープンセットセマンティックレイフロンティア
- Authors: Omar Alama, Avigyan Bhattacharya, Haoyang He, Seungchan Kim, Yuheng Qiu, Wenshan Wang, Cherie Ho, Nikhil Keetha, Sebastian Scherer,
- Abstract要約: RayFrontsは、密度と範囲外の両方の効率的なセマンティックマッピングを可能にする統一表現である。
RayFrontsは、タスク非依存のオープンセットセマンティクスを、マップ境界で符号化された範囲内ボクセルと範囲外の両方にエンコードする。
範囲内のセマンティックスをベンチマークすると、RayFrontsのきめ細かい画像エンコーディングは1.34倍のゼロショット3Dセマンティックセマンティックセマンティクス性能を提供する。
- 参考スコア(独自算出の注目度): 7.884911942320125
- License:
- Abstract: Open-set semantic mapping is crucial for open-world robots. Current mapping approaches either are limited by the depth range or only map beyond-range entities in constrained settings, where overall they fail to combine within-range and beyond-range observations. Furthermore, these methods make a trade-off between fine-grained semantics and efficiency. We introduce RayFronts, a unified representation that enables both dense and beyond-range efficient semantic mapping. RayFronts encodes task-agnostic open-set semantics to both in-range voxels and beyond-range rays encoded at map boundaries, empowering the robot to reduce search volumes significantly and make informed decisions both within & beyond sensory range, while running at 8.84 Hz on an Orin AGX. Benchmarking the within-range semantics shows that RayFronts's fine-grained image encoding provides 1.34x zero-shot 3D semantic segmentation performance while improving throughput by 16.5x. Traditionally, online mapping performance is entangled with other system components, complicating evaluation. We propose a planner-agnostic evaluation framework that captures the utility for online beyond-range search and exploration, and show RayFronts reduces search volume 2.2x more efficiently than the closest online baselines.
- Abstract(参考訳): オープンセットのセマンティックマッピングは、オープンワールドロボットにとって不可欠である。
現在のマッピングアプローチは、奥行き範囲によって制限されるか、制約された設定における範囲外エンティティのみにマップされる。
さらに、これらの手法は、きめ細かい意味論と効率性のトレードオフをもたらす。
RayFrontsは、密度と範囲外の両方の効率的なセマンティックマッピングを可能にする統一表現である。
RayFrontsはタスク非依存のオープンセットセマンティクスを、地図境界で符号化されたインレンジボクセルとレンジ外の両方にエンコードする。
内部領域のセマンティクスをベンチマークすると、RayFrontsのきめ細かい画像エンコーディングにより、1.34倍のゼロショット3Dセマンティクスセマンティクス性能が得られ、スループットは16.5倍向上した。
伝統的に、オンラインマッピングのパフォーマンスは他のシステムコンポーネントと絡み合っており、評価を複雑にしている。
本研究では,オンライン検索・探索の実用性を把握したプランナー非依存評価フレームワークを提案し,RayFrontsが検索量を最も近いオンラインベースラインよりも効率的に2.2倍削減することを示す。
関連論文リスト
- GOI: Find 3D Gaussians of Interest with an Optimizable Open-vocabulary Semantic-space Hyperplane [53.388937705785025]
3Dオープンボキャブラリのシーン理解は、拡張現実とロボット応用の推進に不可欠である。
GOIは2次元視覚言語基礎モデルから3次元ガウススプラッティング(3DGS)に意味的特徴を統合するフレームワークである。
提案手法では,特徴空間内の超平面分割として特徴選択処理を扱い,クエリに関連性の高い特徴のみを保持する。
論文 参考訳(メタデータ) (2024-05-27T18:57:18Z) - Hi-Map: Hierarchical Factorized Radiance Field for High-Fidelity
Monocular Dense Mapping [51.739466714312805]
ニューラルラジアンス場(NeRF)に基づく新しいモノクリン高密度マッピング手法であるHi-Mapを導入する。
ハイマップは、RGB入力のみを用いた効率的かつ高忠実なマッピングを実現する能力において例外的である。
論文 参考訳(メタデータ) (2024-01-06T12:32:25Z) - ALSTER: A Local Spatio-Temporal Expert for Online 3D Semantic
Reconstruction [62.599588577671796]
本稿では,RGB-Dフレームのストリームから3次元セマンティックマップを段階的に再構成するオンライン3次元セマンティックセマンティックセマンティクス手法を提案する。
オフラインの手法とは異なり、ロボット工学や混合現実のようなリアルタイムな制約のあるシナリオに直接適用できます。
論文 参考訳(メタデータ) (2023-11-29T20:30:18Z) - Mobile-Seed: Joint Semantic Segmentation and Boundary Detection for
Mobile Robots [17.90723909170376]
セマンティックセグメンテーションと境界検出を同時に行う軽量なフレームワークであるMobile-Seedを紹介する。
我々のフレームワークは、2ストリームエンコーダ、アクティブフュージョンデコーダ(AFD)、デュアルタスク正規化アプローチを備えている。
Cityscapesデータセットの実験によると、Mobile-Seedは最先端(SOTA)ベースラインよりも顕著に改善されている。
論文 参考訳(メタデータ) (2023-11-21T14:53:02Z) - GP-NeRF: Generalized Perception NeRF for Context-Aware 3D Scene Understanding [101.32590239809113]
Generalized Perception NeRF (GP-NeRF) は、広く使われているセグメンテーションモデルとNeRFを統一されたフレームワークで相互に動作させる新しいパイプラインである。
本稿では,セマンティック蒸留損失(Semantic Distill Loss)とDepth-Guided Semantic Distill Loss(Depth-Guided Semantic Distill Loss)という2つの自己蒸留機構を提案する。
論文 参考訳(メタデータ) (2023-11-20T15:59:41Z) - Scene-Generalizable Interactive Segmentation of Radiance Fields [64.37093918762]
我々はSGISRF(Scene-Generalizable Interactive in Radiance Fields)の最初の試みを行う。
そこで本研究では,複数視点の2D画像に対して,対話的なユーザクリック数回しか表示されない,新しい(見えない)シーンの3Dオブジェクトセグメンテーションを実現するSGISRF手法を提案する。
多様なシーンをカバーする2つの実世界の挑戦的ベンチマーク実験は,1) 提案手法の有効性とシーン一般化性を示し,2) シーン固有の最適化を必要とする古典的手法と比較して良好な性能を示した。
論文 参考訳(メタデータ) (2023-08-09T17:55:50Z) - Push-the-Boundary: Boundary-aware Feature Propagation for Semantic
Segmentation of 3D Point Clouds [0.5249805590164901]
本研究では,オブジェクト境界近傍のセマンティックセグメンテーションを改善するための境界対応特徴伝搬機構を提案する。
1つの共有エンコーダで、ネットワークは、(i)境界ローカライゼーション、(ii)オブジェクトの内部を指す方向の予測、(iii)セマンティックセグメンテーションを3つの並列ストリームで出力する。
提案手法は境界誤差を低減することによって一貫した改善をもたらす。
論文 参考訳(メタデータ) (2022-12-23T15:42:01Z) - A Real-Time Online Learning Framework for Joint 3D Reconstruction and
Semantic Segmentation of Indoor Scenes [87.74952229507096]
本稿では,屋内シーンの3次元構造とセマンティックラベルを協調的に復元するリアルタイムオンライン視覚フレームワークを提案する。
列車時、ノイズの多い深度マップ、カメラ軌跡、および2Dセマンティックラベルを与えられたニューラルネットワークは、シーン空間に適切なセマンティックラベルでフレームの奥行きを融合させることを学習する。
論文 参考訳(メタデータ) (2021-08-11T14:29:01Z) - Scan-based Semantic Segmentation of LiDAR Point Clouds: An Experimental
Study [2.6205925938720833]
最先端の手法では、深いニューラルネットワークを使用して、LiDARスキャンの各点のセマンティッククラスを予測する。
LiDAR測定を処理するための強力で効率的な方法は、2次元の画像のような投影を使うことである。
メモリの制約だけでなく、パフォーマンスの向上やランタイムの改善など、さまざまなテクニックを実証する。
論文 参考訳(メタデータ) (2020-04-06T11:08:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。