論文の概要: Detecting AI-generated Artwork
- arxiv url: http://arxiv.org/abs/2504.07078v1
- Date: Wed, 09 Apr 2025 17:50:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:07:05.939695
- Title: Detecting AI-generated Artwork
- Title(参考訳): AI生成アートワークの検出
- Authors: Meien Li, Mark Stamp,
- Abstract要約: 生成AIの最近の改良により、人間が生成したアートとAI生成したアートを区別することが難しくなった。
機械学習(ML)モデルとディープラーニング(DL)モデルがAI生成アートと人為的アートを区別する可能性について検討する。
- 参考スコア(独自算出の注目度): 1.3812010983144798
- License:
- Abstract: The high efficiency and quality of artwork generated by Artificial Intelligence (AI) has created new concerns and challenges for human artists. In particular, recent improvements in generative AI have made it difficult for people to distinguish between human-generated and AI-generated art. In this research, we consider the potential utility of various types of Machine Learning (ML) and Deep Learning (DL) models in distinguishing AI-generated artwork from human-generated artwork. We focus on three challenging artistic styles, namely, baroque, cubism, and expressionism. The learning models we test are Logistic Regression (LR), Support Vector Machine (SVM), Multilayer Perceptron (MLP), and Convolutional Neural Network (CNN). Our best experimental results yield a multiclass accuracy of 0.8208 over six classes, and an impressive accuracy of 0.9758 for the binary classification problem of distinguishing AI-generated from human-generated art.
- Abstract(参考訳): 人工知能(AI)が生成するアートワークの高効率性と品質は、人間のアーティストに新たな関心と課題を生み出している。
特に、最近の生成AIの改善により、人間が生成したアートとAI生成したアートを区別することが難しくなった。
本研究では,AI生成アートワークと人間生成アートワークを区別する上で,機械学習(ML)モデルとディープラーニング(DL)モデルの有用性を検討する。
我々は、バロック、キュビズム、表現主義という3つの挑戦的な芸術スタイルに焦点を当てている。
私たちがテストした学習モデルは、ロジスティック回帰(LR)、サポートベクトルマシン(SVM)、マルチレイヤパーセプトロン(MLP)、畳み込みニューラルネットワーク(CNN)です。
実験結果から,AI生成技術とAI生成技術とを区別する二項分類問題において,マルチクラスの精度が0.8208,印象的な精度が0.9758となった。
関連論文リスト
- ArtBrain: An Explainable end-to-end Toolkit for Classification and Attribution of AI-Generated Art and Style [2.7321177315998915]
本稿では,10種類のアートスタイルにまたがる185,015のアートイメージを収録したデータセットであるAI-ArtBenchを紹介する。
125,015点のAI生成画像と6万点の人造アートワークが含まれている。
生成モデルの属性の精度は0.999に達する。
論文 参考訳(メタデータ) (2024-12-02T14:03:50Z) - A Sanity Check for AI-generated Image Detection [49.08585395873425]
我々はAI生成画像を検出するAI生成画像検出装置(AI生成画像検出装置)を提案する。
AIDEは最先端の手法を+3.5%、+4.6%改善した。
論文 参考訳(メタデータ) (2024-06-27T17:59:49Z) - Organic or Diffused: Can We Distinguish Human Art from AI-generated Images? [24.417027069545117]
AIが生成した画像を人間のアートから取り除くことは、難しい問題だ。
この問題に対処できないため、悪いアクターは、AIイメージを禁止したポリシーを掲げる人間芸術や企業に対してプレミアムを支払う個人を欺くことができる。
7つのスタイルにまたがって実際の人間のアートをキュレートし、5つの生成モデルからマッチング画像を生成し、8つの検出器を適用します。
論文 参考訳(メタデータ) (2024-02-05T17:25:04Z) - AI Art Neural Constellation: Revealing the Collective and Contrastive
State of AI-Generated and Human Art [36.21731898719347]
我々は、人間の芸術遺産の文脈内でAI生成芸術を位置づけるための包括的な分析を行う。
私たちの比較分析は、ArtConstellationと呼ばれる広範なデータセットに基づいています。
鍵となる発見は、1800-2000年に作られた現代美術の原理とAIが生成したアートアートが視覚的に関連していることである。
論文 参考訳(メタデータ) (2024-02-04T11:49:51Z) - The Generative AI Paradox: "What It Can Create, It May Not Understand" [81.89252713236746]
生成AIの最近の波は、潜在的に超人的な人工知能レベルに対する興奮と懸念を引き起こしている。
同時に、モデルは、専門家でない人でも期待できないような理解の基本的な誤りを示している。
一見超人的な能力と、ごく少数の人間が起こすエラーの持続性を、どうやって再現すればよいのか?
論文 参考訳(メタデータ) (2023-10-31T18:07:07Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - Seeing is not always believing: Benchmarking Human and Model Perception
of AI-Generated Images [66.20578637253831]
人工知能(AI)技術の進歩が偽写真を生み出すのではないかという懸念が高まっている。
本研究の目的は、最先端のAI生成視覚コンテンツを識別するためのエージェントを包括的に評価することである。
論文 参考訳(メタデータ) (2023-04-25T17:51:59Z) - Human and AI Perceptual Differences in Image Classification Errors [13.045020949359621]
本研究はまず,2つの情報源からの誤りの統計的分布を分析し,課題難易度がこれらの分布に与える影響について検討する。
AIがトレーニングデータから優れたモデルを学び、全体的な精度で人間を上回ったとしても、これらのAIモデルは人間の知覚と有意で一貫した違いを持つ。
論文 参考訳(メタデータ) (2023-04-18T05:09:07Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
我々は,膨大なマルチモーダル(視覚的・テキスト的)データを事前学習した新しい基礎モデルを開発する。
そこで本研究では,様々な下流タスクにおいて,最先端の成果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T12:25:21Z) - Cognitive Anthropomorphism of AI: How Humans and Computers Classify
Images [0.0]
人間は認知人類同型(英: Cognitive anthropomorphism)、つまりAIが人間の知性と同じ性質を持つことを期待する。
このミスマッチは、適切な人間とAIの相互作用に障害をもたらす。
私は、人間とAIの分類のミスマッチに対処できるシステム設計に3つの戦略を提供します。
論文 参考訳(メタデータ) (2020-02-07T21:49:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。