Evolutionary algorithms meet self-supervised learning: a comprehensive survey
- URL: http://arxiv.org/abs/2504.07213v1
- Date: Wed, 09 Apr 2025 18:39:41 GMT
- Title: Evolutionary algorithms meet self-supervised learning: a comprehensive survey
- Authors: Adriano Vinhas, João Correia, Penousal Machado,
- Abstract summary: Combination of these two areas can help both in shaping evolutionary processes and in automating the design of deep neural networks.<n>We suggest a new sub-area of research, which we call Evolutionary Self-Supervised Learning.<n>We point out some of the main challenges and suggest directions for future research to help Evolutionary Self-Supervised Learning grow and mature as a field.
- Score: 0.49157446832511503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The number of studies that combine Evolutionary Machine Learning and self-supervised learning has been growing steadily in recent years. Evolutionary Machine Learning has been shown to help automate the design of machine learning algorithms and to lead to more reliable solutions. Self-supervised learning, on the other hand, has produced good results in learning useful features when labelled data is limited. This suggests that the combination of these two areas can help both in shaping evolutionary processes and in automating the design of deep neural networks, while also reducing the need for labelled data. Still, there are no detailed reviews that explain how Evolutionary Machine Learning and self-supervised learning can be used together. To help with this, we provide an overview of studies that bring these areas together. Based on this growing interest and the range of existing works, we suggest a new sub-area of research, which we call Evolutionary Self-Supervised Learning and introduce a taxonomy for it. Finally, we point out some of the main challenges and suggest directions for future research to help Evolutionary Self-Supervised Learning grow and mature as a field.
Related papers
- Enhancing Generative Class Incremental Learning Performance with Model Forgetting Approach [50.36650300087987]
This study presents a novel approach to Generative Class Incremental Learning (GCIL) by introducing the forgetting mechanism.
We have found that integrating the forgetting mechanisms significantly enhances the models' performance in acquiring new knowledge.
arXiv Detail & Related papers (2024-03-27T05:10:38Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - When Meta-Learning Meets Online and Continual Learning: A Survey [39.53836535326121]
meta-learning is a data-driven approach to optimize the learning algorithm.
Continual learning and online learning, both of which involve incrementally updating a model with streaming data.
This paper organizes various problem settings using consistent terminology and formal descriptions.
arXiv Detail & Related papers (2023-11-09T09:49:50Z) - Enhancing Robot Learning through Learned Human-Attention Feature Maps [6.724036710994883]
We think that embedding auxiliary information about focus point into robot learning would enhance efficiency and robustness of the learning process.
In this paper, we propose a novel approach to model and emulate the human attention with an approximate prediction model.
We test our approach on two learning tasks - object detection and imitation learning.
arXiv Detail & Related papers (2023-08-29T14:23:44Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z) - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch [76.83052807776276]
We show that it is possible to automatically discover complete machine learning algorithms just using basic mathematical operations as building blocks.
We demonstrate this by introducing a novel framework that significantly reduces human bias through a generic search space.
We believe these preliminary successes in discovering machine learning algorithms from scratch indicate a promising new direction in the field.
arXiv Detail & Related papers (2020-03-06T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.