論文の概要: Alice: Proactive Learning with Teacher's Demonstrations for Weak-to-Strong Generalization
- arxiv url: http://arxiv.org/abs/2504.07316v2
- Date: Fri, 11 Apr 2025 20:13:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 10:02:50.593951
- Title: Alice: Proactive Learning with Teacher's Demonstrations for Weak-to-Strong Generalization
- Title(参考訳): Alice: 弱々しい一般化のための教師の指示による積極的学習
- Authors: Shujin Wu, Cheng Qian, Yi R. Fung, Paul Pu Liang, Heng Ji,
- Abstract要約: Weak-to-strong Generalization (W2SG)は、ますます有能な言語モデル(LLM)を監督するための有望なフレームワークを提供する。
伝統的なW2SG手法は受動的学習に依存しており、弱い教師は強い生徒を訓練するためにノイズの多いデモを提供する。
教師と生徒の相補的な知識を活用して学習プロセスを強化するフレームワークであるAliceを紹介した。
- 参考スコア(独自算出の注目度): 69.96794098855938
- License:
- Abstract: The growing capabilities of large language models (LLMs) present a key challenge of maintaining effective human oversight. Weak-to-strong generalization (W2SG) offers a promising framework for supervising increasingly capable LLMs using weaker ones. Traditional W2SG methods rely on passive learning, where a weak teacher provides noisy demonstrations to train a strong student. This hinders students from employing their knowledge during training and reaching their full potential. In this work, we introduce Alice (pro{A}ctive {l}earning w{i}th tea{c}her's D{e}monstrations), a framework that leverages complementary knowledge between teacher and student to enhance the learning process. We probe the knowledge base of the teacher model by eliciting their uncertainty, and then use these insights together with teachers' responses as demonstrations to guide student models in self-generating improved responses for supervision. In addition, for situations with significant capability gaps between teacher and student models, we introduce cascade Alice, which employs a hierarchical training approach where weak teachers initially supervise intermediate models, who then guide stronger models in sequence. Experimental results demonstrate that our method significantly enhances the W2SG performance, yielding substantial improvements in three key tasks compared to the original W2SG: knowledge-based reasoning (+4.0%), mathematical reasoning (+22.62%), and logical reasoning (+12.11%). This highlights the effectiveness of our new W2SG paradigm that enables more robust knowledge transfer and supervision outcome.
- Abstract(参考訳): 大きな言語モデル(LLM)の能力の増大は、効果的な人間の監視を維持する上で重要な課題となる。
W2SG(Wak-to-strong generalization)は、弱いものを用いて、より能力の高いLLMを監視するための有望なフレームワークを提供する。
伝統的なW2SG手法は受動的学習に依存しており、弱い教師は強い生徒を訓練するためにノイズの多いデモを提供する。
これにより、学生はトレーニング中に知識を活用できなくなり、その潜在能力を最大限に発揮できなくなる。
本研究では,Alice (pro{A}ctive {l}earning w{i}th tea{c}her's D{e}monstrations) を紹介する。
本研究では,教師モデルの知識基盤を,不確実性を引き出すことによって探究し,これらの知見を教師の回答とともに活用し,教師の指導力を高めるために学生モデルの指導を行う。
さらに,教師モデルと学生モデルの間に有能なギャップがある状況に対して,弱い教師が最初は中間モデルを監督する階層的な訓練手法を取り入れたカスケードアリスを導入する。
実験の結果,本手法はW2SGの性能を大幅に向上させ,知識ベース推論(+4.0%),数学的推論(+22.62%),論理的推論(+12.11%)の3つの主要なタスクを向上させた。
これは、より堅牢な知識伝達と監督結果を可能にする新しいW2SGパラダイムの有効性を強調します。
関連論文リスト
- Teaching-Assistant-in-the-Loop: Improving Knowledge Distillation from Imperfect Teacher Models in Low-Budget Scenarios [3.818273633647809]
3種類の信号型を利用した3成分フレームワークを提案する。
最初の信号は学生の自己整合性(学生の複数の出力の整合性)であり、学生の自信の代用となる。
提案した2段階フレームワークは,データセット間の信号を持たない微調整と比較して,20.79%の相対的な改善を実現している。
論文 参考訳(メタデータ) (2024-06-08T02:17:43Z) - Bayesian WeakS-to-Strong from Text Classification to Generation [14.897191979004782]
この研究は、人間の意見の多様性をシミュレートする弱いモデルのアンサンブルを探索することで、Weak-to-StrongからWeakS-to-Strongに拡張する。
信頼性スコアは、WeakS-to-Strong一般化を導くベイズ的アプローチを用いて推定される。
その結果,提案手法の有効性を学生モデルの信頼性に示し,スーパーアライメントの可能性を示した。
論文 参考訳(メタデータ) (2024-05-24T13:33:11Z) - Co-Supervised Learning: Improving Weak-to-Strong Generalization with
Hierarchical Mixture of Experts [81.37287967870589]
我々は,一貫した生徒を統括する,一貫した一貫した教師ではなく,多様な専門教師の集合を活用することを提案する。
我々のアプローチは、古典的な階層的な専門家の混合に似ている。
提案手法は,OpenAIの弱強ベンチマークと追加のマルチドメインデータセットを用いて,視覚認識タスクにより検証する。
論文 参考訳(メタデータ) (2024-02-23T18:56:11Z) - Improving Weak-to-Strong Generalization with Scalable Oversight and
Ensemble Learning [21.401598876308345]
本稿では,OpenAI の Wak-to-Strong Generalization (W2SG) に関する最近のスーパーアライメント研究について報告する。
Superalignmentは、複雑でリスクの高いタスクを扱う際に、ハイレベルなAIシステムが人間の価値観や意図と一貫していることを保証することに重点を置いている。
本研究は,W2SGフレームワーク下での2つのスーパーアライメントの位相をシミュレートする。
論文 参考訳(メタデータ) (2024-02-01T15:30:19Z) - YODA: Teacher-Student Progressive Learning for Language Models [82.0172215948963]
本稿では,教師が指導するプログレッシブ・ラーニング・フレームワークであるYodaを紹介する。
モデルファインチューニングの有効性を向上させるために,教師の教育過程をエミュレートする。
実験の結果, YODAのデータによるLLaMA2のトレーニングにより, SFTは大幅に向上した。
論文 参考訳(メタデータ) (2024-01-28T14:32:15Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
NERモデルの堅牢性を改善するために,自己学習型教員学生フレームワークを提案する。
本稿では,2つの教員ネットワークからなる適応型教員学習を提案する。
微粒な学生アンサンブルは、教師モデルの各フラグメントを、生徒の対応するフラグメントの時間移動平均で更新し、各モデルフラグメントのノイズに対する一貫した予測を強化する。
論文 参考訳(メタデータ) (2022-12-13T12:14:09Z) - Better Teacher Better Student: Dynamic Prior Knowledge for Knowledge
Distillation [70.92135839545314]
本研究では,教師の持つ特徴の一部を,特徴蒸留前の先行知識として統合した動的事前知識(DPK)を提案する。
DPKは,教員モデルと生徒モデルのパフォーマンスを正に相関させ,より大きな教員を適用することで生徒の精度をさらに高めることができる。
論文 参考訳(メタデータ) (2022-06-13T11:52:13Z) - Dual Policy Distillation [58.43610940026261]
教員政策を学生政策に転換する政策蒸留は、深層強化学習の課題において大きな成功を収めた。
本研究では,2人の学習者が同じ環境下で活動し,環境の異なる視点を探索する,学生学生による二重政策蒸留(DPD)を導入する。
この二重学習フレームワークを開発する上で重要な課題は、同時代の学習に基づく強化学習アルゴリズムにおいて、ピア学習者から有益な知識を特定することである。
論文 参考訳(メタデータ) (2020-06-07T06:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。