論文の概要: FLASH: Flexible Learning of Adaptive Sampling from History in Temporal Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2504.07337v1
- Date: Wed, 09 Apr 2025 23:35:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:24:27.418218
- Title: FLASH: Flexible Learning of Adaptive Sampling from History in Temporal Graph Neural Networks
- Title(参考訳): FLASH: 時間グラフニューラルネットワークにおける履歴からの適応サンプリングの柔軟な学習
- Authors: Or Feldman, Krishna Sri Ipsit Mantri, Carola-Bibiane Schönlieb, Chaim Baskin, Moshe Eliasof,
- Abstract要約: 時間グラフニューラルネットワーク(TGNN)は、一様サンプリングや最近の隣人選択のような、歴史的な隣人サンプリングに依存することが多い。
学習可能なグラフ適応型近傍選択機構であるFLASHを紹介する。
FLASHはTGNNにシームレスに統合され、セルフ教師付きランキング損失を使用してエンドツーエンドにトレーニングされる。
- 参考スコア(独自算出の注目度): 16.789250434408164
- License:
- Abstract: Aggregating temporal signals from historic interactions is a key step in future link prediction on dynamic graphs. However, incorporating long histories is resource-intensive. Hence, temporal graph neural networks (TGNNs) often rely on historical neighbors sampling heuristics such as uniform sampling or recent neighbors selection. These heuristics are static and fail to adapt to the underlying graph structure. We introduce FLASH, a learnable and graph-adaptive neighborhood selection mechanism that generalizes existing heuristics. FLASH integrates seamlessly into TGNNs and is trained end-to-end using a self-supervised ranking loss. We provide theoretical evidence that commonly used heuristics hinders TGNNs performance, motivating our design. Extensive experiments across multiple benchmarks demonstrate consistent and significant performance improvements for TGNNs equipped with FLASH.
- Abstract(参考訳): 歴史的相互作用からの時間信号の集約は、動的グラフ上の将来のリンク予測の重要なステップである。
しかし、長い歴史を取り入れることは資源集約である。
したがって、時間グラフニューラルネットワーク(TGNN)は、一様サンプリングや最近の隣人選択のような、歴史的な隣人サンプリングヒューリスティックに依存していることが多い。
これらのヒューリスティックスは静的であり、基礎となるグラフ構造に適応できない。
既存のヒューリスティックスを一般化する学習可能でグラフ適応的な近傍選択機構であるFLASHを紹介する。
FLASHはTGNNにシームレスに統合され、セルフ教師付きランキング損失を使用してエンドツーエンドにトレーニングされる。
我々は、一般的に使われているヒューリスティックスがTGNNのパフォーマンスを妨げ、我々の設計を動機付けているという理論的証拠を提供する。
複数のベンチマークにわたる大規模な実験では、FLASHを搭載したTGNNの一貫性と大幅な性能向上が示されている。
関連論文リスト
- FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - Attention-based Dynamic Graph Convolutional Recurrent Neural Network for
Traffic Flow Prediction in Highway Transportation [0.6650227510403052]
高速道路交通における交通流予測を改善するために,注意に基づく動的グラフ畳み込みリカレントニューラルネットワーク(ADG-N)を提案する。
グラフ畳み込み演算のオーバーフィッティングを低減するために、高い相対ノードを強調する専用ゲートカーネルが完全なグラフ上に導入された。
論文 参考訳(メタデータ) (2023-09-13T13:57:21Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
時間グラフは連続時間を通してノード間の動的相互作用を示す。
本研究では,周辺地域全体と時間的グラフ畳み込みの新たな手法を提案する。
提案するTAP-GNNは,予測性能とオンライン推論遅延の両面で,既存の時間グラフ手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-04-15T08:17:18Z) - Graph Sequential Neural ODE Process for Link Prediction on Dynamic and
Sparse Graphs [33.294977897987685]
動的グラフ上のリンク予測は、グラフマイニングにおいて重要な課題である。
動的グラフニューラルネットワーク(DGNN)に基づく既存のアプローチは通常、かなりの量の履歴データを必要とする。
グラフシークエンシャルニューラルネットワークプロセス(GSNOP)と呼ばれる,ニューラルプロセスに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-11-15T23:21:02Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
時空間グラフニューラルネットワーク(ST-GNN)は、時間変動データの効率的なグラフ表現を学習する。
本稿では,ST-GNNの特性を再検討し,安定なグラフ安定性を示す。
解析の結果,ST-GNNは時間変化グラフ上での移動学習に適していることが示唆された。
論文 参考訳(メタデータ) (2022-10-28T16:59:51Z) - Efficient-Dyn: Dynamic Graph Representation Learning via Event-based
Temporal Sparse Attention Network [2.0047096160313456]
動的グラフニューラルネットワークは、研究者からますます注目を集めている。
本稿では,新しい動的グラフニューラルネットワークであるEfficient-Dynを提案する。
時間的情報を同じ量の時間的トポロジ的構造を持つパッチのシーケンスに適応的に符号化する。
論文 参考訳(メタデータ) (2022-01-04T23:52:24Z) - Networked Time Series Prediction with Incomplete Data [59.45358694862176]
我々は、歴史と未来の両方で欠落した値を持つ不完全なデータでトレーニングできる新しいディープラーニングフレームワークであるNetS-ImpGANを提案する。
3つの実世界のデータセットに対して、異なるパターンと欠落率で広範な実験を行う。
論文 参考訳(メタデータ) (2021-10-05T18:20:42Z) - Dynamic Graph Convolutional Recurrent Network for Traffic Prediction:
Benchmark and Solution [18.309299822858243]
DGCRN(Dynamic Graph Contemporal Recurrent Network)と呼ばれる新しい交通予測フレームワークを提案する。
DGCRNでは、ハイパーネットワークはノード属性から動的特性を活用して抽出するように設計されている。
我々は、各時間ステップで動的グラフの細かい反復をモデル化する生成法を最初に採用した。
論文 参考訳(メタデータ) (2021-04-30T11:25:43Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。