論文の概要: Space-Time Graph Neural Networks with Stochastic Graph Perturbations
- arxiv url: http://arxiv.org/abs/2210.16270v1
- Date: Fri, 28 Oct 2022 16:59:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 17:35:49.615962
- Title: Space-Time Graph Neural Networks with Stochastic Graph Perturbations
- Title(参考訳): 確率グラフ摂動を用いた時空間グラフニューラルネットワーク
- Authors: Samar Hadou, Charilaos Kanatsoulis, and Alejandro Ribeiro
- Abstract要約: 時空間グラフニューラルネットワーク(ST-GNN)は、時間変動データの効率的なグラフ表現を学習する。
本稿では,ST-GNNの特性を再検討し,安定なグラフ安定性を示す。
解析の結果,ST-GNNは時間変化グラフ上での移動学習に適していることが示唆された。
- 参考スコア(独自算出の注目度): 100.31591011966603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Space-time graph neural networks (ST-GNNs) are recently developed
architectures that learn efficient graph representations of time-varying data.
ST-GNNs are particularly useful in multi-agent systems, due to their stability
properties and their ability to respect communication delays between the
agents. In this paper we revisit the stability properties of ST-GNNs and prove
that they are stable to stochastic graph perturbations. Our analysis suggests
that ST-GNNs are suitable for transfer learning on time-varying graphs and
enables the design of generalized convolutional architectures that jointly
process time-varying graphs and time-varying signals. Numerical experiments on
decentralized control systems validate our theoretical results and showcase the
benefits of traditional and generalized ST-GNN architectures.
- Abstract(参考訳): 時空間グラフニューラルネットワーク(ST-GNN)は、時間変化データの効率的なグラフ表現を学習するアーキテクチャである。
st-gnnは、安定性とエージェント間の通信遅延を尊重する能力から、マルチエージェントシステムにおいて特に有用である。
本稿では,ST-GNNの安定性特性を再検討し,確率的グラフ摂動に対して安定であることを証明する。
解析の結果,st-gnnは時変グラフの転送学習に適しており,時変グラフと時変信号を同時に処理する一般化畳み込みアーキテクチャの設計が可能であることが示唆された。
分散制御システムの数値実験により,従来のST-GNNアーキテクチャの利点を実証した。
関連論文リスト
- FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - Learning Stable Graph Neural Networks via Spectral Regularization [18.32587282139282]
グラフニューラルネットワーク(GNN)の安定性は、GNNがグラフ摂動にどう反応するかを特徴付け、ノイズの多いシナリオでアーキテクチャのパフォーマンスを保証する。
本稿では,グラフスペクトル領域におけるフィルタ周波数応答を正規化することにより,アーキテクチャの安定性を向上させる自己正規化グラフニューラルネットワーク(SR-GNN)を開発した。
論文 参考訳(メタデータ) (2022-11-13T17:27:21Z) - Graph-Time Convolutional Neural Networks: Architecture and Theoretical
Analysis [12.995632804090198]
グラフ時間畳み込みニューラルネットワーク(GTCNN)を学習支援の原則アーキテクチャとして導入する。
このアプローチはどんな種類のプロダクトグラフでも機能し、パラメトリックグラフを導入して、プロダクトの時間的結合も学べます。
GTCNNが最先端のソリューションと好意的に比較できることを示す。
論文 参考訳(メタデータ) (2022-06-30T10:20:52Z) - Spatio-Temporal Latent Graph Structure Learning for Traffic Forecasting [6.428566223253948]
S-Temporal Latent Graph Structure Learning Network (ST-LGSL) を提案する。
このモデルは多層パーセプトロンとK-Nearest Neighborに基づくグラフを用いて、データ全体から潜在グラフトポロジ情報を学習する。
kNNの接地確率行列に基づく依存関係-kNNと類似度メートル法により、ST-LGSLは地理的およびノード類似度に重点を置くトップを集約する。
論文 参考訳(メタデータ) (2022-02-25T10:02:49Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Space-Time Graph Neural Networks [104.55175325870195]
本研究では、時空間グラフニューラルネットワーク(ST-GNN)を導入し、時間変動ネットワークデータの時空間トポロジを共同処理する。
解析の結果,システムのネットワークトポロジと時間進化の変動はST-GNNの性能に大きく影響しないことがわかった。
論文 参考訳(メタデータ) (2021-10-06T16:08:44Z) - Spatio-Temporal Graph Scattering Transform [54.52797775999124]
グラフニューラルネットワークは、十分な高品質のトレーニングデータがないために、現実のシナリオでは実用的ではないかもしれない。
我々は時間的データを解析するための数学的に設計された新しいフレームワークを考案した。
論文 参考訳(メタデータ) (2020-12-06T19:49:55Z) - Gated Graph Recurrent Neural Networks [176.3960927323358]
グラフ処理の一般的な学習フレームワークとしてグラフリカレントニューラルネットワーク(GRNN)を導入する。
勾配の消失問題に対処するため,時間,ノード,エッジゲートの3つの異なるゲーティング機構でGRNNを前進させた。
数値的な結果は、GRNNがGNNやRNNよりも優れており、グラフプロセスの時間構造とグラフ構造の両方を考慮することが重要であることを示している。
論文 参考訳(メタデータ) (2020-02-03T22:35:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。