論文の概要: Throughput-Optimal Scheduling Algorithms for LLM Inference and AI Agents
- arxiv url: http://arxiv.org/abs/2504.07347v2
- Date: Thu, 24 Apr 2025 14:10:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.45441
- Title: Throughput-Optimal Scheduling Algorithms for LLM Inference and AI Agents
- Title(参考訳): LLM推論とAIエージェントのためのスループット最適スケジューリングアルゴリズム
- Authors: Yueying Li, Jim Dai, Tianyi Peng,
- Abstract要約: 我々は,大規模言語モデル(LLM)推論のための待ち行列の基礎を開発する。
大規模な'作業保守'スケジューリングアルゴリズムが最大スループットを達成できることを実証する。
- 参考スコア(独自算出の注目度): 6.318292471845427
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As demand for Large Language Models (LLMs) and AI agents rapidly grows, optimizing systems for efficient LLM inference becomes critical. While significant efforts have focused on system-level engineering, little is explored from a mathematical modeling and queuing perspective. In this paper, we aim to develop the queuing fundamentals for large language model (LLM) inference, bridging the gap between the queueing theory and LLM system communities. In particular, we study the throughput aspect in LLM inference systems. We prove that a large class of 'work-conserving' scheduling algorithms can achieve maximum throughput for individual inference LLM engine, highlighting 'work-conserving' as a key design principle in practice. In a network of LLM agents, work-conserving scheduling alone is insufficient, particularly when facing specific workload structures and multi-class workflows that require more sophisticated scheduling strategies. Evaluations of real-world systems show that Orca and Sarathi-serve are throughput-optimal, reassuring practitioners, while FasterTransformer and vanilla vLLM are not maximally stable and should be used with caution. Our results highlight the substantial benefits that the queueing community can offer in improving LLM inference systems and call for more interdisciplinary development.
- Abstract(参考訳): 大規模言語モデル(LLM)とAIエージェントの需要が急速に増大するにつれて、効率的なLLM推論のための最適化システムが重要になる。
システムレベルのエンジニアリングに多大な努力を払ってきたが、数学的モデリングやキューイングの観点からはほとんど研究されていない。
本稿では,大規模言語モデル (LLM) 推論のための待ち行列の基礎を開発し,待ち行列理論とLLMシステムコミュニティのギャップを埋めることを目的とする。
特に,LLM推論システムにおけるスループットの側面について検討する。
我々は,大規模な'作業保守'スケジューリングアルゴリズムが,個人推論LLMエンジンの最大スループットを達成できることを証明し,実際に重要な設計原則として'作業保守'を強調した。
LLMエージェントのネットワークでは、特により洗練されたスケジューリング戦略を必要とする特定のワークロード構造やマルチクラスワークフローに直面している場合、ワーク保存スケジューリングだけでは不十分である。
実世界のシステムの評価によると、OrcaとSarathi-serveはスループットが最適である一方で、FasterTransformerとvanilla vLLMは最高に安定せず、慎重に使用するべきである。
この結果から,LLM推論システムの改良や学際的開発への取り組みにおいて,待ち行列コミュニティがもたらす大きなメリットを浮き彫りにしている。
関連論文リスト
- An Autonomous Network Orchestration Framework Integrating Large Language Models with Continual Reinforcement Learning [13.3347292702828]
本稿では,SemCom対応SAGINのためのARC(Autonomous Reinforcement Coordination)というフレームワークを提案する。
ARCはオーケストレーションを2層に分割し、LLMを高レベルの計画に、RLエージェントを低レベルの意思決定に利用している。
論文 参考訳(メタデータ) (2025-02-22T11:53:34Z) - A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
大規模言語モデル(LLM)開発における最大の課題は、その面倒な事前トレーニングコストである。
本稿では,小言語モデル(SLM)を活用して,LLMの事前学習効率と品質を改善するための有望なパラダイムについて検討する。
論文 参考訳(メタデータ) (2024-10-24T14:31:52Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Large Language Models for Knowledge-Free Network Management: Feasibility Study and Opportunities [36.70339455624253]
本稿では,大規模言語モデル(LLM)と呼ばれる基礎モデルの力による,知識のない新しいネットワーク管理パラダイムについて述べる。
LLMは、最小限のシステム情報を含む入力プロンプトから重要なコンテキストを理解することができ、完全に新しいタスクであっても顕著な推論性能を提供する。
計算結果は,知識のないLLMが既存の知識ベース最適化アルゴリズムに匹敵する性能を達成できることを検証した。
論文 参考訳(メタデータ) (2024-10-06T07:42:23Z) - LLMs can Schedule [3.435169201271934]
ジョブショップスケジューリング問題(JSSP)は、生産プロセスの最適化において重要なハードルであり続けている。
本稿では,JSSPにおけるLarge Language Models(LLM)の可能性について検討する。
驚くべきことに,LLMに基づくスケジューリングは,他のニューラルアプローチに匹敵する性能を達成できることを示した。
論文 参考訳(メタデータ) (2024-08-13T15:53:58Z) - Large Language Model as a Catalyst: A Paradigm Shift in Base Station Siting Optimization [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
提案するフレームワークは、検索拡張生成(RAG)を組み込んで、ドメイン固有の知識を取得してソリューションを生成するシステムの能力を高める。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - New Solutions on LLM Acceleration, Optimization, and Application [14.995654657013741]
大規模言語モデル (LLM) は、様々な応用において人間のような文章を解釈・生成する能力を持つ非常に強力な機器となっている。
しかし、LLMのサイズと複雑さの増大は、トレーニングとデプロイメントの両方において大きな課題をもたらしている。
これらの課題に対処するための最近の進歩と研究の方向性について概観する。
論文 参考訳(メタデータ) (2024-06-16T11:56:50Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
本研究では,LLMを用いた生成IoT(Generative IoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - Extracting Heuristics from Large Language Models for Reward Shaping in Reinforcement Learning [28.077228879886402]
強化学習(Reinforcement Learning, RL)は、報酬領域におけるサンプルの非効率性に悩まされ、移行時にはさらにその問題が顕著になる。
サンプル効率を改善するために、報酬形成はRLエージェントが最適なポリシーに迅速に収束するのに役立つ本質的な報酬を導入するためのよく研究されたアプローチである。
論文 参考訳(メタデータ) (2024-05-24T03:53:57Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Extending Token Computation for LLM Reasoning [5.801044612920816]
大規模言語モデル(LLM)は、自然言語処理の進歩において重要な要素である。
LLMは、非効率な注意分布のため、複雑な推論タスクに苦しむことが多い。
本稿では,アテンション機構の最適化を利用して,計算トークンをChain-of-Thoughtプロセスで拡張する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-22T03:23:58Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Towards Efficient Generative Large Language Model Serving: A Survey from
Algorithms to Systems [14.355768064425598]
生成型大規模言語モデル(LLM)が最前線に立ち、データとのインタラクション方法に革命をもたらします。
しかし、これらのモデルをデプロイする際の計算強度とメモリ消費は、効率性の観点から大きな課題を呈している。
本研究は,機械学習システム(MLSys)研究の観点から,効率的なLCM提供手法の必要性について考察する。
論文 参考訳(メタデータ) (2023-12-23T11:57:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。