論文の概要: FAIR-SIGHT: Fairness Assurance in Image Recognition via Simultaneous Conformal Thresholding and Dynamic Output Repair
- arxiv url: http://arxiv.org/abs/2504.07395v1
- Date: Thu, 10 Apr 2025 02:23:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:23:02.319103
- Title: FAIR-SIGHT: Fairness Assurance in Image Recognition via Simultaneous Conformal Thresholding and Dynamic Output Repair
- Title(参考訳): FAIR-SIGHT: 同時コンフォーマル閾値と動的出力補正による画像認識の公平性保証
- Authors: Arya Fayyazi, Mehdi Kamal, Massoud Pedram,
- Abstract要約: 本稿では,コンフォメーション予測と動的出力修復機構を組み合わせることで,コンピュータビジョンシステムの公平性を確保するためのポストホックフレームワークを提案する。
提案手法は,予測誤差と公平性違反を同時に評価する,公平性を考慮した非整合性スコアを算出する。
新しい画像の非整合スコアがしきい値を超えると、FAIR-SIGHTは分類のためのロジットシフトや検出のための信頼度補正など、対象とする修正調整を実行する。
- 参考スコア(独自算出の注目度): 4.825037489691159
- License:
- Abstract: We introduce FAIR-SIGHT, an innovative post-hoc framework designed to ensure fairness in computer vision systems by combining conformal prediction with a dynamic output repair mechanism. Our approach calculates a fairness-aware non-conformity score that simultaneously assesses prediction errors and fairness violations. Using conformal prediction, we establish an adaptive threshold that provides rigorous finite-sample, distribution-free guarantees. When the non-conformity score for a new image exceeds the calibrated threshold, FAIR-SIGHT implements targeted corrective adjustments, such as logit shifts for classification and confidence recalibration for detection, to reduce both group and individual fairness disparities, all without the need for retraining or having access to internal model parameters. Comprehensive theoretical analysis validates our method's error control and convergence properties. At the same time, extensive empirical evaluations on benchmark datasets show that FAIR-SIGHT significantly reduces fairness disparities while preserving high predictive performance.
- Abstract(参考訳): 本稿では,コンフォメーション予測と動的出力修復機構を組み合わせることで,コンピュータビジョンシステムの公平性を確保するために設計された,革新的なポストホックフレームワークであるFAIR-SIGHTを紹介する。
提案手法は,予測誤差と公平性違反を同時に評価する,公平性を考慮した非整合性スコアを算出する。
共形予測を用いて、厳密な有限サンプル分布保証を提供する適応しきい値を確立する。
新しい画像の非整合度スコアが校正しきい値を超えると、FAIR-SIGHTは、分類のためのロジットシフトや検出のための信頼度補正のような目標とする修正調整を実装して、内部モデルパラメータのリトレーニングやアクセスを必要とせずに、グループと個人の公平性の違いを減らした。
包括的理論的解析は,提案手法の誤差制御と収束特性を検証する。
同時に、ベンチマークデータセットに対する広範な経験的評価は、FAIR-SIGHTは高い予測性能を維持しながら、公平性の違いを著しく低減することを示している。
関連論文リスト
- Noise-Adaptive Conformal Classification with Marginal Coverage [53.74125453366155]
本稿では,ランダムラベルノイズによる交換性からの偏差を効率的に処理できる適応型共形推論手法を提案する。
本手法は,合成および実データに対して,その有効性を示す広範囲な数値実験により検証する。
論文 参考訳(メタデータ) (2025-01-29T23:55:23Z) - The Penalized Inverse Probability Measure for Conformal Classification [0.5172964916120902]
この研究は、Pinalized Inverse Probability(PIP)の非整合性スコアと、その正規化バージョンRePIPを導入し、効率性と情報性の両方を共同で最適化する。
この研究は、PIPに基づく共形分類器が、他の非整合性対策と比較して正確に望ましい振る舞いを示し、情報性と効率のバランスを保っていることを示す。
論文 参考訳(メタデータ) (2024-06-13T07:37:16Z) - Equal Opportunity of Coverage in Fair Regression [50.76908018786335]
我々は、予測の不確実性の下で公正な機械学習(ML)を研究し、信頼性と信頼性のある意思決定を可能にする。
本研究は,(1)類似した結果の異なる集団に対するカバー率が近いこと,(2)人口全体のカバー率が一定水準にあること,の2つの特性を達成することを目的としたカバーの平等機会(EOC)を提案する。
論文 参考訳(メタデータ) (2023-11-03T21:19:59Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
コンフォーマル予測は、機械学習において厳密な不確実性定量化を提供するための一般的なパラダイムとして現れつつある。
本稿では,共形予測を連邦学習環境に拡張する。
本稿では、FL設定に適した部分交換可能性の弱い概念を提案し、それをフェデレート・コンフォーマル予測フレームワークの開発に利用する。
論文 参考訳(メタデータ) (2023-05-27T19:57:27Z) - RobustFair: Adversarial Evaluation through Fairness Confusion Directed
Gradient Search [8.278129731168127]
ディープニューラルネットワーク(DNN)は、様々な敵の摂動に対する脆弱性のため、しばしば課題に直面している。
本稿では, 偽りや偏りのある摂動を受ける場合のDNNの正確な公平性を評価するための新しいアプローチであるRobustFairを紹介する。
論文 参考訳(メタデータ) (2023-05-18T12:07:29Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - Evaluating Probabilistic Classifiers: The Triptych [62.997667081978825]
本稿では,予測性能の異なる相補的な側面に焦点をあてた診断グラフィックのトリチチを提案し,研究する。
信頼性図は校正に対処し、受信動作特性(ROC)曲線は識別能力を診断し、マーフィー図は全体的な予測性能と価値を視覚化する。
論文 参考訳(メタデータ) (2023-01-25T19:35:23Z) - Fairness-aware Outlier Ensemble [30.0516419408149]
外れたアンサンブルメソッドは、大部分のデータと著しく異なるインスタンスの発見において、優れたパフォーマンスを示している。
公正さの意識がなければ、不正検出や司法判断システムといった倫理的シナリオにおける適用性は低下する可能性がある。
公平性を意識したアンサンブルフレームワークにより、アウトリーヤアンサンブル結果のバイアスを低減することを提案する。
論文 参考訳(メタデータ) (2021-03-17T03:21:24Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
確率的に統計的に一貫性があり、最適に結合し、再現可能な信頼性図を自動生成するCORP手法を導入する。
コーパスは非パラメトリックアイソトニック回帰に基づいており、プール・アジャセント・ヴァイオレータ(PAV)アルゴリズムによって実装されている。
論文 参考訳(メタデータ) (2020-08-07T08:22:26Z) - Fairness by Explicability and Adversarial SHAP Learning [0.0]
本稿では,外部監査役の役割とモデル説明可能性を強調するフェアネスの新たな定義を提案する。
逆代理モデルのSHAP値から構築した正規化を用いてモデルバイアスを緩和するフレームワークを開発する。
合成データセット、UCIアダルト(国勢調査)データセット、実世界の信用評価データセットである。
論文 参考訳(メタデータ) (2020-03-11T14:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。