論文の概要: Synthetic CT Generation from Time-of-Flight Non-Attenutaion-Corrected PET for Whole-Body PET Attenuation Correction
- arxiv url: http://arxiv.org/abs/2504.07450v1
- Date: Thu, 10 Apr 2025 04:49:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:22:12.398612
- Title: Synthetic CT Generation from Time-of-Flight Non-Attenutaion-Corrected PET for Whole-Body PET Attenuation Correction
- Title(参考訳): 全体PET減衰補正のための飛行時間非アテンタリオン補正PETからの合成CT生成
- Authors: Weijie Chen, James Wang, Alan McMillan,
- Abstract要約: 本研究では,時系列非減衰補正(NAC)PET画像から直接合成CT(sCT)画像を生成するためのディープラーニング手法を提案する。
まず,CT-CT再構成作業のための大規模自然画像データセットを用いた事前学習モデルについて検討した。
TOF NAC PET画像から骨と軟部組織を再構築した。
- 参考スコア(独自算出の注目度): 6.062988223565465
- License:
- Abstract: Positron Emission Tomography (PET) imaging requires accurate attenuation correction (AC) to account for photon loss due to tissue density variations. In PET/MR systems, computed tomography (CT), which offers a straightforward estimation of AC is not available. This study presents a deep learning approach to generate synthetic CT (sCT) images directly from Time-of-Flight (TOF) non-attenuation corrected (NAC) PET images, enhancing AC for PET/MR. We first evaluated models pre-trained on large-scale natural image datasets for a CT-to-CT reconstruction task, finding that the pre-trained model outperformed those trained solely on medical datasets. The pre-trained model was then fine-tuned using an institutional dataset of 35 TOF NAC PET and CT volume pairs, achieving the lowest mean absolute error (MAE) of 74.49 HU and highest peak signal-to-noise ratio (PSNR) of 28.66 dB within the body contour region. Visual assessments demonstrated improved reconstruction of both bone and soft tissue structures from TOF NAC PET images. This work highlights the effectiveness of using pre-trained deep learning models for medical image translation tasks. Future work will assess the impact of sCT on PET attenuation correction and explore additional neural network architectures and datasets to further enhance performance and practical applications in PET imaging.
- Abstract(参考訳): PET(Positron Emission Tomography)イメージングでは、組織密度の変化による光子損失を正確に補正する必要がある。
PET/MRシステムでは、ACを直接推定するCT(Computerd tomography)は利用できない。
本研究では,NAC PET 画像から直接合成CT (sCT) 画像を生成するための深層学習手法を提案する。
まず,CTからCTへの再構成作業において,大規模自然画像データセットを用いた事前学習モデルの評価を行った。
事前訓練されたモデルは、35TOF NAC PETとCTボリュームペアの機関的データセットを用いて微調整され、74.49HUの最小平均絶対誤差(MAE)と28.66dBの最高信号-雑音比(PSNR)を達成した。
TOF NAC PET画像から骨と軟部組織を再構築した。
本研究は、医用画像翻訳タスクにおいて、事前学習されたディープラーニングモデルを使用することの有効性を強調した。
今後の研究は、PET減衰補正に対するsCTの影響を評価し、PETイメージングにおけるパフォーマンスと実用性をさらに向上するために、追加のニューラルネットワークアーキテクチャとデータセットを探索する予定である。
関連論文リスト
- End-to-end Triple-domain PET Enhancement: A Hybrid Denoising-and-reconstruction Framework for Reconstructing Standard-dose PET Images from Low-dose PET Sinograms [43.13562515963306]
低線量PETシングラムから標準線量PET画像の再構成を行うために,TripleTフレームワークを提案する。
提案したTriPLETは,最先端の手法と比較して,SPET画像と実データとの類似性と信号対雑音比が最も高い再構成を行うことができる。
論文 参考訳(メタデータ) (2024-12-04T14:47:27Z) - Diffusion Transformer Model With Compact Prior for Low-dose PET Reconstruction [7.320877150436869]
低線量PET画像の再構成品質を高めるために,JCP(Joint compact prior)により導かれる拡散変圧器モデルを提案する。
DTMは拡散モデルの強力な分布マッピング能力と変圧器の容量を組み合わせて長距離依存を捉える。
本手法は放射線曝露リスクを軽減するだけでなく,早期診断や患者管理のためのPETイメージングツールも提供する。
論文 参考訳(メタデータ) (2024-07-01T03:54:43Z) - End-to-End Model-based Deep Learning for Dual-Energy Computed Tomography Material Decomposition [53.14236375171593]
本稿では,定量化のためのエンド・ツー・エンド材料分解(E2E-DEcomp)と呼ばれる深層学習手法を提案する。
AAPMスペクトルCTデータセットにおける直接E2E-DEcomp法の有効性を示す。
論文 参考訳(メタデータ) (2024-06-01T16:20:59Z) - Two-Phase Multi-Dose-Level PET Image Reconstruction with Dose Level Awareness [43.45142393436787]
線量レベルの認識が可能な新しい二相多段PET再構成アルゴリズムを設計する。
事前学習フェーズは、きめ細かい識別特徴と効果的な意味表現の両方を探索するために考案された。
SPET予測フェーズは、事前学習した線量レベルを利用した粗い予測ネットワークを採用して予備結果を生成する。
論文 参考訳(メタデータ) (2024-04-02T01:57:08Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - PET Synthesis via Self-supervised Adaptive Residual Estimation
Generative Adversarial Network [14.381830012670969]
近年,低線量画像から高画質PET画像を生成する手法が,低線量画像の回収手法の最先端技術であることが報告されている。
これらの問題に対処するため、我々は自己教師付き適応残差推定生成対向ネットワーク(SS-AEGAN)を開発した。
SS-AEGANは、様々な線量還元因子による最先端の合成法よりも一貫して優れていた。
論文 参考訳(メタデータ) (2023-10-24T06:43:56Z) - Synthetic CT Generation via Variant Invertible Network for All-digital
Brain PET Attenuation Correction [11.402215536210337]
減衰補正(AC)は, アーティファクトフリーで定量精度の高いポジトロン放射トモグラフィ(PET)画像の生成に不可欠である。
本稿では,脳PET画像における非減衰補正PET画像から,深層学習を用いて連続的に評価されたCT画像を生成するPET AC法を開発した。
論文 参考訳(メタデータ) (2023-10-03T08:38:52Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - Self-Supervised Pre-Training for Deep Image Prior-Based Robust PET Image
Denoising [0.5999777817331317]
ポジトロン・エミッション・トモグラフィ(PET)画像修復にDeep Image prior (DIP) が有効である。
DIPに基づくPET画像復調性能を改善するための自己教師付き事前学習モデルを提案する。
論文 参考訳(メタデータ) (2023-02-27T06:55:00Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。