Probability Estimation and Scheduling Optimization for Battery Swap Stations via LRU-Enhanced Genetic Algorithm and Dual-Factor Decision System
- URL: http://arxiv.org/abs/2504.07453v2
- Date: Thu, 01 May 2025 13:57:36 GMT
- Title: Probability Estimation and Scheduling Optimization for Battery Swap Stations via LRU-Enhanced Genetic Algorithm and Dual-Factor Decision System
- Authors: Anzhen Li, Shufan Qing, Xiaochang Li, Rui Mao, Mingchen Feng,
- Abstract summary: This research proposes a probability estimation model based on charging pile data and constructs nine scenario-specific battery swap demand datasets.<n>It incorporates a guided search mechanism, which effectively enhances the global optimization capability.<n>When benchmarked against immediate swap-and-charge strategy, our algorithm achieves a peak cost reduction of 13.96%.
- Score: 2.845879685273271
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To address the challenges of limited Battery Swap Stations datasets, high operational costs, and fluctuating user charging demand, this research proposes a probability estimation model based on charging pile data and constructs nine scenario-specific battery swap demand datasets. In addition, this study combines Least Recently Used strategy with Genetic Algorithm and incorporates a guided search mechanism, which effectively enhances the global optimization capability. Thus, a dual-factor decision-making based charging schedule optimization system is constructed. Experimental results show that the constructed datasets exhibit stable trend characteristics, adhering to 24-hour and 168-hour periodicity patterns, with outlier ratios consistently below 3.26%, confirming data validity. Compared to baseline, the improved algorithm achieves better fitness individuals in 80% of test regions under the same iterations. When benchmarked against immediate swap-and-charge strategy, our algorithm achieves a peak cost reduction of 13.96%. Moreover, peak user satisfaction reaches 98.57%, while the average iteration time remains below 0.6 seconds, demonstrating good computational efficiency. The complete datasets and optimization algorithm are open-sourced at https://github.com/qingshufan/GA-EVLRU.
Related papers
- Optimal Dataset Size for Recommender Systems: Evaluating Algorithms' Performance via Downsampling [0.0]
This thesis investigates dataset downsampling as a strategy to optimize energy efficiency in recommender systems.
By applying two downsampling approaches to seven datasets, 12 algorithms, and two levels of core pruning, the research demonstrates significant reductions in runtime and carbon emissions.
arXiv Detail & Related papers (2025-02-12T23:32:09Z) - Value-Based Deep RL Scales Predictably [100.21834069400023]
We show that value-based off-policy RL methods are predictable despite community lore regarding their pathological behavior.<n>We validate our approach using three algorithms: SAC, BRO, and PQL on DeepMind Control, OpenAI gym, and IsaacGym.
arXiv Detail & Related papers (2025-02-06T18:59:47Z) - Testing the Efficacy of Hyperparameter Optimization Algorithms in Short-Term Load Forecasting [0.0]
We use the Panama Electricity dataset to evaluate HPO algorithms' performances on a surrogate forecasting algorithm, XGBoost, in terms of accuracy (i.e., MAPE, $R2$) and runtime.
Results reveal significant runtime advantages for HPO algorithms over Random Search.
arXiv Detail & Related papers (2024-10-19T09:08:52Z) - Acquiring Better Load Estimates by Combining Anomaly and Change Point Detection in Power Grid Time-series Measurements [0.49478969093606673]
Our approach prioritizes interpretability while ensuring robust and generalizable performance on unseen data.
Results indicate the clear wasted potential when filtering is not applied.
Our methodology's interpretability makes it particularly suitable for critical infrastructure planning.
arXiv Detail & Related papers (2024-05-25T10:15:51Z) - A Meta-Learning Approach to Predicting Performance and Data Requirements [163.4412093478316]
We propose an approach to estimate the number of samples required for a model to reach a target performance.
We find that the power law, the de facto principle to estimate model performance, leads to large error when using a small dataset.
We introduce a novel piecewise power law (PPL) that handles the two data differently.
arXiv Detail & Related papers (2023-03-02T21:48:22Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
limited communication resources, bandwidth and energy, and data heterogeneity across devices are main bottlenecks for federated learning (FL)
We first devise a novel FL framework with partial model aggregation (PMA)
The proposed PMA-FL improves 2.72% and 11.6% accuracy on two typical heterogeneous datasets.
arXiv Detail & Related papers (2022-04-20T19:09:52Z) - Optimizing Coordinative Schedules for Tanker Terminals: An Intelligent
Large Spatial-Temporal Data-Driven Approach -- Part 1 [4.181498820782148]
The proposed approach consists of enhanced particle swarm optimization (ePSO) as kernel and augmented firefly algorithm (AFA) as global optimal search.
The experimental results show that both paradigm methods of proposed approach can effectively enhance port efficiency.
arXiv Detail & Related papers (2022-04-08T07:56:32Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Towards Efficient Scheduling of Federated Mobile Devices under
Computational and Statistical Heterogeneity [16.069182241512266]
This paper studies the implementation of distributed learning on mobile devices.
We use data as a tuning knob and propose two efficient-time algorithms to schedule different workloads.
Compared with the common benchmarks, the proposed algorithms achieve 2-100x speedup-wise, 2-7% accuracy gain and convergence rate by more than 100% on CIFAR10.
arXiv Detail & Related papers (2020-05-25T18:21:51Z) - Towards a Competitive End-to-End Speech Recognition for CHiME-6 Dinner
Party Transcription [73.66530509749305]
In this paper, we argue that, even in difficult cases, some end-to-end approaches show performance close to the hybrid baseline.
We experimentally compare and analyze CTC-Attention versus RNN-Transducer approaches along with RNN versus Transformer architectures.
Our best end-to-end model based on RNN-Transducer, together with improved beam search, reaches quality by only 3.8% WER abs. worse than the LF-MMI TDNN-F CHiME-6 Challenge baseline.
arXiv Detail & Related papers (2020-04-22T19:08:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.