Kimi-VL Technical Report
- URL: http://arxiv.org/abs/2504.07491v2
- Date: Tue, 15 Apr 2025 17:14:37 GMT
- Title: Kimi-VL Technical Report
- Authors: Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin Zhang, Chenzhuang Du, Chu Wei, Congcong Wang, Dehao Zhang, Dikang Du, Dongliang Wang, Enming Yuan, Enzhe Lu, Fang Li, Flood Sung, Guangda Wei, Guokun Lai, Han Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haoning Wu, Haotian Yao, Haoyu Lu, Heng Wang, Hongcheng Gao, Huabin Zheng, Jiaming Li, Jianlin Su, Jianzhou Wang, Jiaqi Deng, Jiezhong Qiu, Jin Xie, Jinhong Wang, Jingyuan Liu, Junjie Yan, Kun Ouyang, Liang Chen, Lin Sui, Longhui Yu, Mengfan Dong, Mengnan Dong, Nuo Xu, Pengyu Cheng, Qizheng Gu, Runjie Zhou, Shaowei Liu, Sihan Cao, Tao Yu, Tianhui Song, Tongtong Bai, Wei Song, Weiran He, Weixiao Huang, Weixin Xu, Xiaokun Yuan, Xingcheng Yao, Xingzhe Wu, Xinxing Zu, Xinyu Zhou, Xinyuan Wang, Y. Charles, Yan Zhong, Yang Li, Yangyang Hu, Yanru Chen, Yejie Wang, Yibo Liu, Yibo Miao, Yidao Qin, Yimin Chen, Yiping Bao, Yiqin Wang, Yongsheng Kang, Yuanxin Liu, Yulun Du, Yuxin Wu, Yuzhi Wang, Yuzi Yan, Zaida Zhou, Zhaowei Li, Zhejun Jiang, Zheng Zhang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Zijia Zhao, Ziwei Chen, Zongyu Lin,
- Abstract summary: Kimi-VL is a vision-language model (VLM) that offers advanced multimodal reasoning, long-context understanding, and strong agent capabilities.<n>As a general-purpose VLM, Kimi-VL excels in multi-turn agent tasks (e.g., OSWorld), matching flagship models.<n>Building upon Kimi-VL, we introduce an advanced long-thinking variant: Kimi-VL-Thinking.
- Score: 88.78957513757784
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present Kimi-VL, an efficient open-source Mixture-of-Experts (MoE) vision-language model (VLM) that offers advanced multimodal reasoning, long-context understanding, and strong agent capabilities - all while activating only 2.8B parameters in its language decoder (Kimi-VL-A3B). Kimi-VL demonstrates strong performance across challenging domains: as a general-purpose VLM, Kimi-VL excels in multi-turn agent tasks (e.g., OSWorld), matching flagship models. Furthermore, it exhibits remarkable capabilities across diverse challenging vision language tasks, including college-level image and video comprehension, OCR, mathematical reasoning, and multi-image understanding. In comparative evaluations, it effectively competes with cutting-edge efficient VLMs such as GPT-4o-mini, Qwen2.5-VL-7B, and Gemma-3-12B-IT, while surpassing GPT-4o in several key domains. Kimi-VL also advances in processing long contexts and perceiving clearly. With a 128K extended context window, Kimi-VL can process diverse long inputs, achieving impressive scores of 64.5 on LongVideoBench and 35.1 on MMLongBench-Doc. Its native-resolution vision encoder, MoonViT, further allows it to see and understand ultra-high-resolution visual inputs, achieving 83.2 on InfoVQA and 34.5 on ScreenSpot-Pro, while maintaining lower computational cost for common tasks. Building upon Kimi-VL, we introduce an advanced long-thinking variant: Kimi-VL-Thinking. Developed through long chain-of-thought (CoT) supervised fine-tuning (SFT) and reinforcement learning (RL), this model exhibits strong long-horizon reasoning capabilities. It achieves scores of 61.7 on MMMU, 36.8 on MathVision, and 71.3 on MathVista while maintaining the compact 2.8B activated LLM parameters, setting a new standard for efficient multimodal thinking models. Code and models are publicly accessible at https://github.com/MoonshotAI/Kimi-VL.
Related papers
- MiMo-VL Technical Report [73.47820531501678]
We open-source MiMo-VL-7B-SFT and MiMo-VL-7B-RL, two powerful vision-language models.<n>MiMo-VL-7B-RL outperforms Qwen2.5-VL-7B on 35 out of 40 evaluated tasks, and scores 59.4 on OlympiadBench.<n>For GUI grounding applications, it sets a new standard with 56.1 on OSWorld-G.
arXiv Detail & Related papers (2025-06-04T04:32:54Z) - LENS: Multi-level Evaluation of Multimodal Reasoning with Large Language Models [59.0256377330646]
Lens is a benchmark with 3.4K contemporary images and 60K+ human-authored questions covering eight tasks and 12 daily scenarios.<n>This dataset intrinsically supports to evaluate MLLMs to handle image-invariable prompts, from basic perception to compositional reasoning.<n>We evaluate 15+ frontier MLLMs such as Qwen2.5-VL-72B, InternVL3-78B, GPT-4o and two reasoning models QVQ-72B-preview and Kimi-VL.
arXiv Detail & Related papers (2025-05-21T15:06:59Z) - Seed1.5-VL Technical Report [237.80875144753307]
Seed1.5-VL is a vision-language foundation model designed to advance general-purpose multimodal understanding and reasoning.<n>It delivers strong performance across a wide spectrum of public VLM benchmarks and internal evaluation suites.<n>In agent-centric tasks such as GUI control and gameplay, Seed1.5-VL outperforms leading multimodal systems, including OpenAI CUA and Claude 3.7.
arXiv Detail & Related papers (2025-05-11T17:28:30Z) - CogVLM2: Visual Language Models for Image and Video Understanding [69.361109860391]
We propose the CogVLM2 family, a new generation of visual language models for image and video understanding.
As an image understanding model, CogVLM2 inherits the visual expert architecture with improved training recipes in both pre-training and post-training stages.
As a video understanding model, CogVLM2-Video integrates multi-frame input with timestamps and proposes automated temporal grounding data construction.
arXiv Detail & Related papers (2024-08-29T12:59:12Z) - MM-Vet v2: A Challenging Benchmark to Evaluate Large Multimodal Models for Integrated Capabilities [146.4724093405187]
We introduce MM-Vet v2, which includes a new "image-text sequence understanding" capability called "image-text sequence understanding"<n>Using MM-Vet v2 to benchmark large multimodal models, we found that Claude 3.5 Sonnet is the best model with a score of 71.8, slightly outperforming GPT-4o which scored 71.0.
arXiv Detail & Related papers (2024-08-01T17:59:54Z) - How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites [114.22835695929682]
InternVL 1.5 is an open-source multimodal large language model (MLLM)
It bridges the capability gap between open-source and proprietary commercial models in multimodal understanding.
arXiv Detail & Related papers (2024-04-25T17:59:19Z) - MobileVLM : A Fast, Strong and Open Vision Language Assistant for Mobile
Devices [73.46317110474064]
MobileVLM is a competent multimodal vision language model (MMVLM) targeted to run on mobile devices.
It comprises a set of language models at the scale of 1.4B and 2.7B parameters, trained from scratch, a multimodal vision model that is pre-trained in the CLIP fashion.
arXiv Detail & Related papers (2023-12-28T08:21:24Z) - Cheap and Quick: Efficient Vision-Language Instruction Tuning for Large
Language Models [77.2078051555533]
We propose a novel and affordable solution for the effective VL adaption of large language models (LLMs)
Instead of using large neural networks to connect the image encoder and LLM, MMA adopts lightweight modules, i.e., adapters.
MMA is also equipped with a routing algorithm to help LLMs achieve an automatic shift between single- and multi-modal instructions.
arXiv Detail & Related papers (2023-05-24T11:06:15Z) - EfficientVLM: Fast and Accurate Vision-Language Models via Knowledge
Distillation and Modal-adaptive Pruning [19.354515754130592]
We introduce a distilling then pruning framework to compress large vision-language models into smaller, faster, and more accurate ones.
We apply our framework to train EfficientVLM, a fast and accurate vision-language model consisting of 6 vision layers, 3 text layers, and 3 cross-modal fusion layers.
EfficientVLM retains 98.4% performance of the teacher model and accelerates its inference speed by 2.2x.
arXiv Detail & Related papers (2022-10-14T13:26:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.