Discrete time crystal for periodic-field sensing with quantum-enhanced precision
- URL: http://arxiv.org/abs/2505.04991v1
- Date: Thu, 08 May 2025 06:53:39 GMT
- Title: Discrete time crystal for periodic-field sensing with quantum-enhanced precision
- Authors: Rozhin Yousefjani, Saif Al-Kuwari, Abolfazl Bayat,
- Abstract summary: We show that a disorder-free discrete time crystal probe can reach the ultimate achievable precision for sensing a periodic-field.<n>We propose the implementation of our protocol in ultra-cold atoms in optical lattices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sensing periodic-fields using quantum sensors has been an active field of research. In many of these scenarios, the quantum state of the probe is flipped regularly by the application of ${\pi}$-pulses to accumulate information about the target periodic-field. The emergence of a discrete time crystalline phase, as a nonequilibrium phase of matter, naturally provides oscillations in a many-body system with an inherent controllable frequency. They benefit from long coherence time and robustness against imperfections, which makes them excellent potential quantum sensors. In this paper, through theoretical and numerical analysis, we show that a disorder-free discrete time crystal probe can reach the ultimate achievable precision for sensing a periodic-field. As the amplitude of the periodic-field increases, the discrete time crystalline order diminishes, and the performance of the probe decreases remarkably. Nevertheless, the obtained quantum enhancement in the discrete time crystal phase shows robustness against different imperfections in the protocol. Finally, we propose the implementation of our protocol in ultra-cold atoms in optical lattices.
Related papers
- Constructive interference at the edge of quantum ergodic dynamics [116.94795372054381]
We characterize ergodic dynamics using the second-order out-of-time-order correlators, OTOC$(2)$.<n>In contrast to dynamics without time reversal, OTOC$(2)$ are observed to remain sensitive to the underlying dynamics at long time scales.
arXiv Detail & Related papers (2025-06-11T21:29:23Z) - Time Crystals from single-molecule magnet arrays [0.0]
Time crystals are a unique non-equilibrium quantum phenomenon with promising applications in current quantum technologies.
Here we theoretically predict discrete time-crystals in a periodically driven molecular magnet array.
Surprisingly, we find that the time-crystal response frequency correlates with the energy levels of the individual magnets.
arXiv Detail & Related papers (2024-09-17T01:21:14Z) - Discrete Time Crystal Phase as a Resource for Quantum Enhanced Sensing [0.0]
We propose and characterize an effective mechanism to generate a stable discrete time crystal phase in a disorder-free many-body system.<n>The results show strong quantum-enhanced sensitivity throughout the time crystal phase.<n>A simple set of projective measurements can capture the quantum-enhanced sensitivity.
arXiv Detail & Related papers (2024-05-01T05:30:04Z) - Observation of a time crystal comb in a driven-dissipative system with Rydberg gas [2.4898174182192974]
Time crystals manifest as stable and periodic behavior that breaks time translation symmetry.
In an open quantum system, many-body interaction subjected to dissipation allows one to develop the time crystalline order in an unprecedented way.
We report the observation of a time crystal comb in the continuously driven-dissipative and strongly interacting Rydberg thermal gas.
arXiv Detail & Related papers (2024-02-20T16:09:29Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Prolonging a discrete time crystal by quantum-classical feedback [0.0]
We propose a timeperiodic scheme that leverages quantum-classical feedback protocols in subregions of the system to enhance a time crystal signal significantly exceeding the decoherence time of the device.
Based on classical simulation quantum circuit realizations, we find that this approach is suitable for implementation on existing quantum phases and hardware.
arXiv Detail & Related papers (2023-09-05T11:43:26Z) - Floquet time-crystals as sensors of AC fields [44.99833362998488]
We show that discrete time crystals can overcome the shot noise limit while allowing long interrogation times.
In such systems, collective interactions stabilize their dynamics against noise making them robust enough to protocol imperfections.
arXiv Detail & Related papers (2023-06-06T18:00:08Z) - Exact bistability and time pseudo-crystallization of driven-dissipative
fermionic lattices [0.0]
We prove bistability in precisely the quantum fluctuations.
Surprisingly, rather than destroying bistability, the quantum fluctuations themselves exhibit bistability.
Our work provides to the best of our knowledge the first example of a provably bistable quantum optical system.
arXiv Detail & Related papers (2022-02-18T19:00:00Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Probing quantum information propagation with out-of-time-ordered
correlators [41.12790913835594]
Small-scale quantum information processors hold the promise to efficiently emulate many-body quantum systems.
Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs)
A central requirement for our experiments is the ability to coherently reverse time evolution.
arXiv Detail & Related papers (2021-02-23T15:29:08Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.