Quantum Machine Learning: Unveiling Trends, Impacts through Bibliometric Analysis
- URL: http://arxiv.org/abs/2504.07726v1
- Date: Thu, 10 Apr 2025 13:18:48 GMT
- Title: Quantum Machine Learning: Unveiling Trends, Impacts through Bibliometric Analysis
- Authors: Riya Bansal, Nikhil Kumar Rajput,
- Abstract summary: Quantum Machine Learning (QML) is the intersection of two revolutionary fields: quantum computing and machine learning.<n>This research endeavors to conduct a comprehensive bibliometric analysis of scientific information pertaining to QML covering the period from 2000 to 2023.
- Score: 1.1510009152620668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Machine Learning (QML) is the intersection of two revolutionary fields: quantum computing and machine learning. It promises to unlock unparalleled capabilities in data analysis, model building, and problem-solving by harnessing the unique properties of quantum mechanics. This research endeavors to conduct a comprehensive bibliometric analysis of scientific information pertaining to QML covering the period from 2000 to 2023. An extensive dataset comprising 9493 scholarly works is meticulously examined to unveil notable trends, impact factors, and funding patterns within the domain. Additionally, the study employs bibliometric mapping techniques to visually illustrate the network relationships among key countries, institutions, authors, patent citations and significant keywords in QML research. The analysis reveals a consistent growth in publications over the examined period. The findings highlight the United States and China as prominent contributors, exhibiting substantial publication and citation metrics. Notably, the study concludes that QML, as a research subject, is currently in a formative stage, characterized by robust scholarly activity and ongoing development.
Related papers
- Classical Machine Learning: Seventy Years of Algorithmic Learning Evolution [1.121816400852218]
Machine learning (ML) has transformed numerous fields, but understanding its foundational research is crucial for its continued progress.
This paper presents an overview of the significant classical ML algorithms and examines the state-of-the-art publications spanning twelve decades.
We analyzed a dataset of highly cited papers from prominent ML conferences and journals, employing citation and keyword analyses to uncover critical insights.
arXiv Detail & Related papers (2024-08-03T11:07:10Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - SPIQA: A Dataset for Multimodal Question Answering on Scientific Papers [43.18330795060871]
SPIQA is a dataset specifically designed to interpret complex figures and tables within the context of scientific research articles.<n>We employ automatic and manual curation to create the dataset.<n> SPIQA comprises 270K questions divided into training, validation, and three different evaluation splits.
arXiv Detail & Related papers (2024-07-12T16:37:59Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
We present a comprehensive dataset compiled from Nature Communications articles covering 72 scientific fields.<n>We evaluated 19 proprietary and open-source models on two benchmark tasks, figure captioning and multiple-choice, and conducted human expert annotation.<n>Fine-tuning Qwen2-VL-7B with our task-specific data achieved better performance than GPT-4o and even human experts in multiple-choice evaluations.
arXiv Detail & Related papers (2024-07-06T00:40:53Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [55.33653554387953]
Pattern Analysis and Machine Intelligence (PAMI) has led to numerous literature reviews aimed at collecting and fragmented information.
This paper presents a thorough analysis of these literature reviews within the PAMI field.
We try to address three core research questions: (1) What are the prevalent structural and statistical characteristics of PAMI literature reviews; (2) What strategies can researchers employ to efficiently navigate the growing corpus of reviews; and (3) What are the advantages and limitations of AI-generated reviews compared to human-authored ones.
arXiv Detail & Related papers (2024-02-20T11:28:50Z) - Quantum-Inspired Machine Learning: a Survey [32.913044758923455]
Quantum-inspired Machine Learning (QiML) is a burgeoning field, receiving global attention from researchers.
This survey explores QiML's diverse research domains including tensor network simulations, dequantized algorithms, and others.
As QiML continues to evolve, we anticipate a wealth of future developments drawing from quantum mechanics, quantum computing, and classical machine learning.
arXiv Detail & Related papers (2023-08-22T08:29:09Z) - A Comprehensive Study of Groundbreaking Machine Learning Research:
Analyzing highly cited and impactful publications across six decades [1.6442870218029522]
Machine learning (ML) has emerged as a prominent field of research in computer science and other related fields.
It is crucial to understand the landscape of highly cited publications to identify key trends, influential authors, and significant contributions made thus far.
arXiv Detail & Related papers (2023-08-01T21:43:22Z) - Transition Role of Entangled Data in Quantum Machine Learning [51.6526011493678]
Entanglement serves as the resource to empower quantum computing.
Recent progress has highlighted its positive impact on learning quantum dynamics.
We establish a quantum no-free-lunch (NFL) theorem for learning quantum dynamics using entangled data.
arXiv Detail & Related papers (2023-06-06T08:06:43Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
We conduct a thorough and rigorous study on fairness disparities in peer review with the help of large language models (LMs)
We collect, assemble, and maintain a comprehensive relational database for the International Conference on Learning Representations (ICLR) conference from 2017 to date.
We postulate and study fairness disparities on multiple protective attributes of interest, including author gender, geography, author, and institutional prestige.
arXiv Detail & Related papers (2022-11-07T16:19:42Z) - Artificial Intelligence in Concrete Materials: A Scientometric View [77.34726150561087]
This chapter aims to uncover the main research interests and knowledge structure of the existing literature on AI for concrete materials.
To begin with, a total of 389 journal articles published from 1990 to 2020 were retrieved from the Web of Science.
Scientometric tools such as keyword co-occurrence analysis and documentation co-citation analysis were adopted to quantify features and characteristics of the research field.
arXiv Detail & Related papers (2022-09-17T18:24:56Z) - Multilingual Multi-Aspect Explainability Analyses on Machine Reading Comprehension Models [76.48370548802464]
This paper focuses on conducting a series of analytical experiments to examine the relations between the multi-head self-attention and the final MRC system performance.
We discover that passage-to-question and passage understanding attentions are the most important ones in the question answering process.
Through comprehensive visualizations and case studies, we also observe several general findings on the attention maps, which can be helpful to understand how these models solve the questions.
arXiv Detail & Related papers (2021-08-26T04:23:57Z) - A historical review and Bibliometric analysis of research on Weak
measurement research over the past decades based on Biblioshiny [4.278591555984394]
We used bibliometric methods to evaluate the global scientific output of research on Weak measurement from 2000 to 2020.
The number of publications has increased substantially with time.
The focus has evolved to study quantum information and amplify weak signals.
arXiv Detail & Related papers (2021-08-25T03:07:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.