Cluster-Driven Expert Pruning for Mixture-of-Experts Large Language Models
- URL: http://arxiv.org/abs/2504.07807v1
- Date: Thu, 10 Apr 2025 14:46:26 GMT
- Title: Cluster-Driven Expert Pruning for Mixture-of-Experts Large Language Models
- Authors: Hongcheng Guo, Juntao Yao, Boyang Wang, Junjia Du, Shaosheng Cao, Donglin Di, Shun Zhang, Zhoujun Li,
- Abstract summary: Cluster-driven Expert Pruning (C-Prune) is a novel two-stage framework for adaptive task-specific compression of large language models.<n>C-Prune operates through layer-wise expert clustering, which groups functionally similar experts within each MoE layer.<n>We validate C-Prune through extensive experiments on multiple MoE models and benchmarks.
- Score: 24.64757529640278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixture-of-Experts (MoE) architectures have emerged as a promising paradigm for scaling large language models (LLMs) with sparse activation of task-specific experts. Despite their computational efficiency during inference, the massive overall parameter footprint of MoE models (e.g., GPT-4) introduces critical challenges for practical deployment. Current pruning approaches often fail to address two inherent characteristics of MoE systems: 1).intra-layer expert homogeneity where experts within the same MoE layer exhibit functional redundancy, and 2). inter-layer similarity patterns where deeper layers tend to contain progressively more homogeneous experts. To tackle these issues, we propose Cluster-driven Expert Pruning (C-Prune), a novel two-stage framework for adaptive task-specific compression of MoE LLMs. C-Prune operates through layer-wise expert clustering, which groups functionally similar experts within each MoE layer using parameter similarity metrics, followed by global cluster pruning, which eliminates redundant clusters across all layers through a unified importance scoring mechanism that accounts for cross-layer homogeneity. We validate C-Prune through extensive experiments on multiple MoE models and benchmarks. The results demonstrate that C-Prune effectively reduces model size while outperforming existing MoE pruning methods.
Related papers
- Beyond Standard MoE: Mixture of Latent Experts for Resource-Efficient Language Models [10.623996218106564]
We introduce a novel parameterization methodology that facilitates the mapping of specific experts into a shared latent space.<n>All expert operations are systematically decomposed into two principal components: a shared projection into a lower-dimensional latent space, followed by expert-specific transformations.<n>This factorized approach substantially diminishes parameter count and computational requirements.
arXiv Detail & Related papers (2025-03-29T14:35:34Z) - MoE-I$^2$: Compressing Mixture of Experts Models through Inter-Expert Pruning and Intra-Expert Low-Rank Decomposition [32.97035551579975]
We introduce a two-stage compression method tailored for MoE to reduce the model size and decrease the computational cost.
Experiments on Qwen1.5-MoE-A2.7B, DeepSeek-V2-Lite, and Mixtral-8$times$7B demonstrate that our proposed methods can both reduce the model size and enhance inference efficiency.
arXiv Detail & Related papers (2024-11-01T20:37:58Z) - Retraining-Free Merging of Sparse MoE via Hierarchical Clustering [14.858134039539697]
This paper introduces Hierarchical Clustering for Sparsely activated Mixture of Experts (HC-SMoE)<n>HC-SMoE is a task-agnostic expert merging framework for parameter reduction without retraining.<n>We provide theoretical analysis and evaluations across multiple zero-shot language tasks to demonstrate HC-SMoE's effectiveness in state-of-the-art models including Qwen and Mixtral.
arXiv Detail & Related papers (2024-10-11T07:36:14Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
We propose a method of grouping and pruning similar experts to improve the model's parameter efficiency.
We validate the effectiveness of our method by pruning three state-of-the-art MoE architectures.
The evaluation shows that our method outperforms other model pruning methods on a range of natural language tasks.
arXiv Detail & Related papers (2024-07-12T17:25:02Z) - Multi-Head Mixture-of-Experts [100.60556163597946]
We propose Multi-Head Mixture-of-Experts (MH-MoE), which employs a multi-head mechanism to split each token into multiple sub-tokens.
MH-MoE is straightforward to implement and decouples from other SMoE optimization methods, making it easy to integrate with other SMoE models for enhanced performance.
arXiv Detail & Related papers (2024-04-23T13:47:09Z) - GCC: Generative Calibration Clustering [55.44944397168619]
We propose a novel Generative Clustering (GCC) method to incorporate feature learning and augmentation into clustering procedure.
First, we develop a discrimirative feature alignment mechanism to discover intrinsic relationship across real and generated samples.
Second, we design a self-supervised metric learning to generate more reliable cluster assignment.
arXiv Detail & Related papers (2024-04-14T01:51:11Z) - Multilinear Mixture of Experts: Scalable Expert Specialization through Factorization [51.98792406392873]
Mixture of Experts (MoE) provides a powerful way to decompose dense layers into smaller, modular computations.
A major challenge lies in the computational cost of scaling the number of experts high enough to achieve fine-grained specialization.
We propose the Multilinear Mixture of Experts ($mu$MoE) layer to address this, focusing on vision models.
arXiv Detail & Related papers (2024-02-19T21:20:22Z) - Diversifying the Mixture-of-Experts Representation for Language Models with Orthogonal Optimizer [59.43462055143123]
The Mixture of Experts (MoE) has emerged as a highly successful technique in deep learning.
In this study, we shed light on the homogeneous representation problem, wherein experts in the MoE fail to specialize and lack diversity.
We propose an alternating training strategy that encourages each expert to update in a direction to the subspace spanned by other experts.
arXiv Detail & Related papers (2023-10-15T07:20:28Z) - Efficient and Effective Deep Multi-view Subspace Clustering [9.6753782215283]
We propose a novel deep framework, termed Efficient and Effective deep Multi-View Subspace Clustering (E$2$MVSC)
Instead of a parameterized FC layer, we design a Relation-Metric Net that decouples network parameter scale from sample numbers for greater computational efficiency.
E$2$MVSC yields comparable results to existing methods and achieves state-of-the-art performance in various types of multi-view datasets.
arXiv Detail & Related papers (2023-10-15T03:08:25Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE) has received great interest due to its promising scaling capability with affordable computational overhead.
MoE converts dense layers into sparse experts, and utilizes a gated routing network to make experts conditionally activated.
However, as the number of experts grows, MoE with outrageous parameters suffers from overfitting and sparse data allocation.
arXiv Detail & Related papers (2022-07-19T06:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.