MOSAIC: Modeling Social AI for Content Dissemination and Regulation in Multi-Agent Simulations
- URL: http://arxiv.org/abs/2504.07830v1
- Date: Thu, 10 Apr 2025 15:06:54 GMT
- Title: MOSAIC: Modeling Social AI for Content Dissemination and Regulation in Multi-Agent Simulations
- Authors: Genglin Liu, Salman Rahman, Elisa Kreiss, Marzyeh Ghassemi, Saadia Gabriel,
- Abstract summary: We present a novel, open-source social network simulation framework, MOSAIC, where generative language agents predict user behaviors such as liking, sharing, and flagging content.<n>This simulation combines LLM agents with a directed social graph to analyze emergent deception behaviors and gain a better understanding of how users determine the veracity of online social content.
- Score: 17.780541196299954
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel, open-source social network simulation framework, MOSAIC, where generative language agents predict user behaviors such as liking, sharing, and flagging content. This simulation combines LLM agents with a directed social graph to analyze emergent deception behaviors and gain a better understanding of how users determine the veracity of online social content. By constructing user representations from diverse fine-grained personas, our system enables multi-agent simulations that model content dissemination and engagement dynamics at scale. Within this framework, we evaluate three different content moderation strategies with simulated misinformation dissemination, and we find that they not only mitigate the spread of non-factual content but also increase user engagement. In addition, we analyze the trajectories of popular content in our simulations, and explore whether simulation agents' articulated reasoning for their social interactions truly aligns with their collective engagement patterns. We open-source our simulation software to encourage further research within AI and social sciences.
Related papers
- SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users [70.02370111025617]
We introduce SocioVerse, an agent-driven world model for social simulation.
Our framework features four powerful alignment components and a user pool of 10 million real individuals.
Results demonstrate that SocioVerse can reflect large-scale population dynamics while ensuring diversity, credibility, and representativeness.
arXiv Detail & Related papers (2025-04-14T12:12:52Z) - Large Language Model Driven Agents for Simulating Echo Chamber Formation [5.6488384323017]
The rise of echo chambers on social media platforms has heightened concerns about polarization and the reinforcement of existing beliefs.<n>Traditional approaches for simulating echo chamber formation have often relied on predefined rules and numerical simulations.<n>We present a novel framework that leverages large language models (LLMs) as generative agents to simulate echo chamber dynamics.
arXiv Detail & Related papers (2025-02-25T12:05:11Z) - LMAgent: A Large-scale Multimodal Agents Society for Multi-user Simulation [66.52371505566815]
Large language models (LLMs)-based AI agents have made significant progress, enabling them to achieve human-like intelligence.
We present LMAgent, a very large-scale and multimodal agents society based on multimodal LLMs.
In LMAgent, besides chatting with friends, the agents can autonomously browse, purchase, and review products, even perform live streaming e-commerce.
arXiv Detail & Related papers (2024-12-12T12:47:09Z) - From Individual to Society: A Survey on Social Simulation Driven by Large Language Model-based Agents [47.935533238820334]
Traditional sociological research often relies on human participation, which, though effective, is expensive, challenging to scale, and with ethical concerns.<n>Recent advancements in large language models (LLMs) highlight their potential to simulate human behavior, enabling the replication of individual responses and facilitating studies on many interdisciplinary studies.<n>We categorize the simulations into three types: (1) Individual Simulation, which mimics specific individuals or demographic groups; (2) Scenario Simulation, where multiple agents collaborate to achieve goals within specific contexts; and (3) Simulation Society, which models interactions within agent societies to reflect the complexity and variety of real-world dynamics.
arXiv Detail & Related papers (2024-12-04T18:56:37Z) - A Simulation System Towards Solving Societal-Scale Manipulation [14.799498804818333]
The rise of AI-driven manipulation poses significant risks to societal trust and democratic processes.
Yet, studying these effects in real-world settings at scale is ethically and logistically impractical.
We present a simulation environment designed to address this.
arXiv Detail & Related papers (2024-10-17T03:16:24Z) - GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
We propose a novel large language model (LLMs)-based simulation platform called textitGenSim.
Our platform supports one hundred thousand agents to better simulate large-scale populations in real-world contexts.
To our knowledge, GenSim represents an initial step toward a general, large-scale, and correctable social simulation platform.
arXiv Detail & Related papers (2024-10-06T05:02:23Z) - Fusing Dynamics Equation: A Social Opinions Prediction Algorithm with LLM-based Agents [6.1923703280119105]
This paper proposes an innovative simulation method for the dynamics of social media user opinions.
The FDE-LLM algorithm incorporates opinion dynamics and epidemic model.
It categorizes users into opinion leaders and followers.
arXiv Detail & Related papers (2024-09-13T11:02:28Z) - Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents [101.17919953243107]
GovSim is a generative simulation platform designed to study strategic interactions and cooperative decision-making in large language models (LLMs)<n>We find that all but the most powerful LLM agents fail to achieve a sustainable equilibrium in GovSim, with the highest survival rate below 54%.<n>We show that agents that leverage "Universalization"-based reasoning, a theory of moral thinking, are able to achieve significantly better sustainability.
arXiv Detail & Related papers (2024-04-25T15:59:16Z) - Shall We Team Up: Exploring Spontaneous Cooperation of Competing LLM Agents [18.961470450132637]
This paper emphasizes the importance of spontaneous phenomena, wherein agents deeply engage in contexts and make adaptive decisions without explicit directions.
We explored spontaneous cooperation across three competitive scenarios and successfully simulated the gradual emergence of cooperation.
arXiv Detail & Related papers (2024-02-19T18:00:53Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
We propose an LLM-based agent framework and design a sandbox environment to simulate real user behaviors.
Based on extensive experiments, we find that the simulated behaviors of our method are very close to the ones of real humans.
arXiv Detail & Related papers (2023-06-05T02:58:35Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
Social alignment in AI systems aims to ensure that these models behave according to established societal values.
Current language models (LMs) are trained to rigidly replicate their training corpus in isolation.
This work presents a novel training paradigm that permits LMs to learn from simulated social interactions.
arXiv Detail & Related papers (2023-05-26T14:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.