Shall We Team Up: Exploring Spontaneous Cooperation of Competing LLM Agents
- URL: http://arxiv.org/abs/2402.12327v3
- Date: Sun, 27 Oct 2024 19:03:37 GMT
- Title: Shall We Team Up: Exploring Spontaneous Cooperation of Competing LLM Agents
- Authors: Zengqing Wu, Run Peng, Shuyuan Zheng, Qianying Liu, Xu Han, Brian Inhyuk Kwon, Makoto Onizuka, Shaojie Tang, Chuan Xiao,
- Abstract summary: This paper emphasizes the importance of spontaneous phenomena, wherein agents deeply engage in contexts and make adaptive decisions without explicit directions.
We explored spontaneous cooperation across three competitive scenarios and successfully simulated the gradual emergence of cooperation.
- Score: 18.961470450132637
- License:
- Abstract: Large Language Models (LLMs) have increasingly been utilized in social simulations, where they are often guided by carefully crafted instructions to stably exhibit human-like behaviors during simulations. Nevertheless, we doubt the necessity of shaping agents' behaviors for accurate social simulations. Instead, this paper emphasizes the importance of spontaneous phenomena, wherein agents deeply engage in contexts and make adaptive decisions without explicit directions. We explored spontaneous cooperation across three competitive scenarios and successfully simulated the gradual emergence of cooperation, findings that align closely with human behavioral data. This approach not only aids the computational social science community in bridging the gap between simulations and real-world dynamics but also offers the AI community a novel method to assess LLMs' capability of deliberate reasoning.
Related papers
- PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - LLM-Augmented Agent-Based Modelling for Social Simulations: Challenges and Opportunities [0.0]
Integrating large language models with agent-based simulations offers a transformational potential for understanding complex social systems.
We explore architectures and methods to systematically develop LLM-augmented social simulations.
We conclude that integrating LLMs with agent-based simulations offers a powerful toolset for researchers and scientists.
arXiv Detail & Related papers (2024-05-08T08:57:54Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
We introduce the problem of Large Language Models (LLMs)-based human-agent collaboration for complex task-solving.
We propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC.
This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process.
arXiv Detail & Related papers (2024-02-20T11:03:36Z) - LLM-driven Imitation of Subrational Behavior : Illusion or Reality? [3.2365468114603937]
Existing work highlights the ability of Large Language Models to address complex reasoning tasks and mimic human communication.
We propose to investigate the use of LLMs to generate synthetic human demonstrations, which are then used to learn subrational agent policies.
We experimentally evaluate the ability of our framework to model sub-rationality through four simple scenarios.
arXiv Detail & Related papers (2024-02-13T19:46:39Z) - Systematic Biases in LLM Simulations of Debates [12.933509143906141]
We study the limitations of Large Language Models in simulating human interactions.
Our findings indicate a tendency for LLM agents to conform to the model's inherent social biases.
These results underscore the need for further research to develop methods that help agents overcome these biases.
arXiv Detail & Related papers (2024-02-06T14:51:55Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning.
We propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures.
We demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation.
arXiv Detail & Related papers (2024-01-22T18:58:22Z) - MetaAgents: Simulating Interactions of Human Behaviors for LLM-based
Task-oriented Coordination via Collaborative Generative Agents [27.911816995891726]
We introduce collaborative generative agents, endowing LLM-based Agents with consistent behavior patterns and task-solving abilities.
We propose a novel framework that equips collaborative generative agents with human-like reasoning abilities and specialized skills.
Our work provides valuable insights into the role and evolution of Large Language Models in task-oriented social simulations.
arXiv Detail & Related papers (2023-10-10T10:17:58Z) - Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View [60.80731090755224]
This paper probes the collaboration mechanisms among contemporary NLP systems by practical experiments with theoretical insights.
We fabricate four unique societies' comprised of LLM agents, where each agent is characterized by a specific trait' (easy-going or overconfident) and engages in collaboration with a distinct thinking pattern' (debate or reflection)
Our results further illustrate that LLM agents manifest human-like social behaviors, such as conformity and consensus reaching, mirroring social psychology theories.
arXiv Detail & Related papers (2023-10-03T15:05:52Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
We propose an LLM-based agent framework and design a sandbox environment to simulate real user behaviors.
Based on extensive experiments, we find that the simulated behaviors of our method are very close to the ones of real humans.
arXiv Detail & Related papers (2023-06-05T02:58:35Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
Social alignment in AI systems aims to ensure that these models behave according to established societal values.
Current language models (LMs) are trained to rigidly replicate their training corpus in isolation.
This work presents a novel training paradigm that permits LMs to learn from simulated social interactions.
arXiv Detail & Related papers (2023-05-26T14:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.