2D-Curri-DPO: Two-Dimensional Curriculum Learning for Direct Preference Optimization
- URL: http://arxiv.org/abs/2504.07856v2
- Date: Mon, 21 Apr 2025 01:18:57 GMT
- Title: 2D-Curri-DPO: Two-Dimensional Curriculum Learning for Direct Preference Optimization
- Authors: Mengyang Li, Zhong Zhang,
- Abstract summary: 2D-Curri-DPO is a novel framework employing a two-dimensional curriculum that jointly models Prompt Complexity (PC) and Pairwise Distinguishability.<n>Our approach achieves state-of-the-art performance on challenging test sets like UltraFeedback.
- Score: 3.674552982566341
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aligning large language models with human preferences is crucial for their safe deployment. While Direct Preference Optimization (DPO) offers an efficient alternative to reinforcement learning from human feedback, traditional DPO methods are limited by their reliance on single preference pairs. Recent work like Curriculum-DPO integrates multiple pairs using a one-dimensional difficulty curriculum based on pairwise distinguishability (PD), but overlooks the complexity of the input prompt itself. To address this, we propose 2D-Curri-DPO, a novel framework employing a two-dimensional curriculum that jointly models Prompt Complexity (PC) and Pairwise Distinguishability. This framework introduces dual difficulty metrics to quantify prompt semantic complexity and response preference clarity, defines a curriculum strategy space encompassing multiple selectable strategies for task adaptation, and incorporates a KL-divergence-based adaptive mechanism for dynamic reference model updates to enhance training stability. Comprehensive experiments demonstrate that 2D-Curri-DPO significantly outperforms standard DPO and prior curriculum methods across multiple benchmarks, including MT-Bench, Vicuna Bench, and WizardLM. Our approach achieves state-of-the-art performance on challenging test sets like UltraFeedback. Ablation studies confirm the benefits of the 2D structure and adaptive mechanisms, while analysis provides guidance for strategy selection. These findings demonstrate that effective alignment requires modeling both prompt complexity and pairwise distinguishability, establishing adaptive, multi-dimensional curriculum learning as a powerful and interpretable new paradigm for preference-based language model optimization.
Related papers
- A Survey of Direct Preference Optimization [103.59317151002693]
Large Language Models (LLMs) have demonstrated unprecedented generative capabilities.<n>Their alignment with human values remains critical for ensuring helpful and harmless deployments.<n>Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative.
arXiv Detail & Related papers (2025-03-12T08:45:15Z) - Robust Multi-Objective Preference Alignment with Online DPO [6.434799451791957]
Multi-objective preference alignment is critical for developing AI systems that are personalizable, helpful, and safe.<n>Existing approaches are either computationally expensive to train or do not sufficiently steer model behaviors.<n>This paper introduces the Multi-Objective Online DPO algorithm, designed to robustly and efficiently align model behaviors with multiple, potentially conflicting human preferences.
arXiv Detail & Related papers (2025-03-01T02:01:49Z) - A Systematic Examination of Preference Learning through the Lens of Instruction-Following [83.71180850955679]
We use a novel synthetic data generation pipeline to generate 48,000 instruction unique-following prompts.<n>With our synthetic prompts, we use two preference dataset curation methods - rejection sampling (RS) and Monte Carlo Tree Search (MCTS)<n>Experiments reveal that shared prefixes in preference pairs, as generated by MCTS, provide marginal but consistent improvements.<n>High-contrast preference pairs generally outperform low-contrast pairs; however, combining both often yields the best performance.
arXiv Detail & Related papers (2024-12-18T15:38:39Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.<n>We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.<n>We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - P3: A Policy-Driven, Pace-Adaptive, and Diversity-Promoted Framework for data pruning in LLM Training [22.61313628957683]
This paper introduces P3, an adaptive framework aimed at optimizing the task-specific fine-tuning process through iterative data pruning.
P3 consists of three key components: Policy-driven Difficulty Measurement, Pace-Adaptive Selection, and Diversity Promotion.
We validate P3 on the reasoning scenarios, APPS and MATH, demonstrating significant improvements over traditional data pruning methods.
arXiv Detail & Related papers (2024-08-10T12:44:49Z) - Effective Demonstration Annotation for In-Context Learning via Language Model-Based Determinantal Point Process [45.632012199451275]
In-context learning (ICL) is a few-shot learning paradigm that involves learning mappings through input-output pairs.
Existing works are highly dependent on large-scale labeled support sets, not always feasible in practical scenarios.
We introduce the Language Model-based Determinant Point Process (LM-DPP) that simultaneously considers the uncertainty and diversity of unlabeled instances for optimal selection.
arXiv Detail & Related papers (2024-08-04T18:08:15Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Sample Efficient Preference Alignment in LLMs via Active Exploration [63.84454768573154]
We take advantage of the fact that one can often choose contexts at which to obtain human feedback to most efficiently identify a good policy.
We propose an active exploration algorithm to efficiently select the data and provide theoretical proof that it has a worst-case regret bound.
Our method outperforms the baselines with limited samples of human preferences on several language models and four real-world datasets.
arXiv Detail & Related papers (2023-12-01T00:54:02Z) - Hierarchical Optimization-Derived Learning [58.69200830655009]
We establish a new framework, named Hierarchical ODL (HODL), to simultaneously investigate the intrinsic behaviors of optimization-derived model construction and its corresponding learning process.
This is the first theoretical guarantee for these two coupled ODL components: optimization and learning.
arXiv Detail & Related papers (2023-02-11T03:35:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.