A Novel Self-Evolution Framework for Large Language Models
- URL: http://arxiv.org/abs/2507.15281v1
- Date: Mon, 21 Jul 2025 06:30:39 GMT
- Title: A Novel Self-Evolution Framework for Large Language Models
- Authors: Haoran Sun, Zekun Zhang, Shaoning Zeng,
- Abstract summary: We propose a novel Dual-Phase Self-Evolution framework to jointly optimize user preference adaptation and domain-specific competence.<n>Experiments across general NLP benchmarks and long-term dialogue tasks demonstrate that DPSE consistently outperforms Supervised Fine-Tuning, Preference Optimization, and Memory-Augmented baselines.
- Score: 18.62332474172811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The capabilities of Large Language Models (LLMs) are limited to some extent by pre-training, so some researchers optimize LLMs through post-training. Existing post-training strategies, such as memory-based retrieval or preference optimization, improve user alignment yet fail to enhance the model's domain cognition. To bridge this gap, we propose a novel Dual-Phase Self-Evolution (DPSE) framework that jointly optimizes user preference adaptation and domain-specific competence. DPSE introduces a Censor module to extract multi-dimensional interaction signals and estimate satisfaction scores, which guide structured data expansion via topic-aware and preference-driven strategies. These expanded datasets support a two-stage fine-tuning pipeline: supervised domain grounding followed by frequency-aware preference optimization. Experiments across general NLP benchmarks and long-term dialogue tasks demonstrate that DPSE consistently outperforms Supervised Fine-Tuning, Preference Optimization, and Memory-Augmented baselines. Ablation studies validate the contribution of each module. In this way, our framework provides an autonomous path toward continual self-evolution of LLMs.
Related papers
- When Relevance Meets Novelty: Dual-Stable Periodic Optimization for Exploratory Recommendation [6.663356205396985]
Large language models (LLMs) demonstrate potential with their diverse content generation capabilities.<n>Existing LLM-enhanced dual-model frameworks face two major limitations.<n>First, they overlook long-term preferences driven by group identity, leading to biased interest modeling.<n>Second, they suffer from static optimization flaws, as a one-time alignment process fails to leverage incremental user data for closed-loop optimization.
arXiv Detail & Related papers (2025-08-01T09:10:56Z) - Leveraging Importance Sampling to Detach Alignment Modules from Large Language Models [50.19188692497892]
Traditional alignment methods often require retraining large pretrained models.<n>We propose a novel textitResidual Alignment Model (textitRAM) that formalizes the alignment process as a type of importance sampling.<n>We develop a resampling algorithm with iterative token-level decoding to address the common first-token latency issue in comparable methods.
arXiv Detail & Related papers (2025-05-26T08:53:02Z) - Large Language Model Empowered Recommendation Meets All-domain Continual Pre-Training [60.38082979765664]
CPRec is an All-domain Continual Pre-Training framework for Recommendation.<n>It holistically align LLMs with universal user behaviors through the continual pre-training paradigm.<n>We conduct experiments on five real-world datasets from two distinct platforms.
arXiv Detail & Related papers (2025-04-11T20:01:25Z) - POPEN: Preference-Based Optimization and Ensemble for LVLM-Based Reasoning Segmentation [8.946389785502861]
Existing LVLM-based reasoning segmentation methods often suffer from imprecise segmentation results and hallucinations in their text responses.<n>This paper introduces POPEN, a novel framework designed to address these issues and achieve improved results.
arXiv Detail & Related papers (2025-04-01T10:51:01Z) - CHiP: Cross-modal Hierarchical Direct Preference Optimization for Multimodal LLMs [107.21334626890713]
Multimodal Large Language Models (MLLMs) still struggle with hallucinations despite their impressive capabilities.<n>We propose a Cross-modal Hierarchical Direct Preference Optimization (CHiP) to address these limitations.<n>We evaluate CHiP through both quantitative and qualitative analyses, with results across multiple benchmarks demonstrating its effectiveness in reducing hallucinations.
arXiv Detail & Related papers (2025-01-28T02:05:38Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.<n>We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.<n>We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
We propose a novel perspective to investigate the design of large language models (LLMs)-based prompts.<n>We identify two pivotal factors in model parameter learning: update direction and update method.<n>We develop a capable Gradient-inspired Prompt-based GPO.
arXiv Detail & Related papers (2024-02-27T15:05:32Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.