論文の概要: Dual Engines of Thoughts: A Depth-Breadth Integration Framework for Open-Ended Analysis
- arxiv url: http://arxiv.org/abs/2504.07872v1
- Date: Thu, 10 Apr 2025 15:46:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 16:28:46.392453
- Title: Dual Engines of Thoughts: A Depth-Breadth Integration Framework for Open-Ended Analysis
- Title(参考訳): 思考のデュアルエンジン:オープンエンド分析のための深層統合フレームワーク
- Authors: Fei-Hsuan Yu, Yun-Cheng Chou, Teng-Ruei Chen,
- Abstract要約: The Dual Engines of Thoughts (DEoT)は、包括的なオープンエンド推論のための分析フレームワークである。
オープンエンドの質問」のために設計されており、より広い範囲と深い分析的な探索を可能にする。
実験結果から,DeoTは複雑で多面的問題に対処する上で優れており,総勝率は77~86%であることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose the Dual Engines of Thoughts (DEoT), an analytical framework for comprehensive open-ended reasoning. While traditional reasoning frameworks primarily focus on finding "the best answer" or "the correct answer" for single-answer problems, DEoT is specifically designed for "open-ended questions," enabling both broader and deeper analytical exploration. The framework centers on three key components: a Base Prompter for refining user queries, a Solver Agent that orchestrates task decomposition, execution, and validation, and a Dual-Engine System consisting of a Breadth Engine (to explore diverse impact factors) and a Depth Engine (to perform deep investigations). This integrated design allows DEoT to balance wide-ranging coverage with in-depth analysis, and it is highly customizable, enabling users to adjust analytical parameters and tool configurations based on specific requirements. Experimental results show that DEoT excels in addressing complex, multi-faceted questions, achieving a total win rate of 77-86% compared to existing reasoning models, thus highlighting its effectiveness in real-world applications.
- Abstract(参考訳): 我々は、包括的なオープンエンド推論のための分析フレームワークであるDual Engines of Thoughts (DEoT)を提案する。
従来の推論フレームワークは主に単一回答問題に対する"最高の答え"や"正しい答え"を見つけることに焦点を当てているが、DeoTは特に"オープンな質問"のために設計されており、より広範な分析的探索と深い分析的探索を可能にしている。
このフレームワークは、ユーザクエリを精錬するBase Prompter、タスクの分解、実行、バリデーションを編成するSolver Agent、Breadth Engine(さまざまな影響要因を探索する)とDepth Engine(深い調査を行う)で構成されるDual-Engine Systemの3つの重要なコンポーネントを中心にしている。
この統合設計により、DeoTは広範囲のカバレッジと詳細な分析のバランスをとることができ、ユーザが特定の要件に基づいて分析パラメータやツールの設定を調整することができるように、高度にカスタマイズできる。
実験結果から,DeoTは複雑で多面的問題に対処する上で優れており,既存の推論モデルと比較して77~86%の勝利率を達成し,実世界のアプリケーションでの有効性を強調した。
関連論文リスト
- Decoupled Planning and Execution: A Hierarchical Reasoning Framework for Deep Search [30.988785260110248]
HiRAは、戦略的な計画と専門的な実行を分離する階層的なフレームワークである。
提案手法では,複雑な探索タスクを集中サブタスクに分解し,各サブタスクを外部ツールと推論機能を備えたドメイン固有エージェントに割り当てる。
4つの複雑なクロスモーダルなディープ・サーチ・ベンチマークの実験により、HiRAは最先端のRAGとエージェント・ベース・システムを大きく上回っていることが示された。
論文 参考訳(メタデータ) (2025-07-03T14:18:08Z) - MEXA: Towards General Multimodal Reasoning with Dynamic Multi-Expert Aggregation [64.85885900375483]
MEXAは、エキスパートモデルのモダリティおよびタスク対応アグリゲーションを実行する、トレーニング不要のフレームワークである。
我々は,ビデオ推論,オーディオ推論,3D理解,医用QAなど,多様なマルチモーダルベンチマークに対するアプローチを評価した。
論文 参考訳(メタデータ) (2025-06-20T16:14:13Z) - iQUEST: An Iterative Question-Guided Framework for Knowledge Base Question Answering [6.4524748618007415]
iQUESTは、複雑なクエリを単純なサブクエリに繰り返し分解する質問誘導KBQAフレームワークである。
グラフニューラルネットワーク(GNN)を統合して、各推論ステップに2ホップ隣の情報を組み込む。
論文 参考訳(メタデータ) (2025-06-02T15:30:02Z) - Agent-X: Evaluating Deep Multimodal Reasoning in Vision-Centric Agentic Tasks [94.19506319646376]
本稿では,実世界のマルチモーダル環境での視覚中心エージェント評価のためのベンチマークであるAgent-Xを紹介する。
Agent-Xは、828のエージェントタスクと、イメージ、マルチイメージ比較、ビデオ、命令テキストを含む、真の視覚的コンテキストを備えている。
その結果、GPT、Gemini、Qwenファミリーを含む最高のパフォーマンスモデルでさえ、多段階視覚タスクの解決に苦慮していることが明らかとなった。
論文 参考訳(メタデータ) (2025-05-30T17:59:53Z) - DualRAG: A Dual-Process Approach to Integrate Reasoning and Retrieval for Multi-Hop Question Answering [45.205396863347964]
MHQA(Multi-Hop Question Answering)タスクは、多様な知識領域にまたがる多段階推論のオーケストレーションにおいて課題となる。
推論と検索をシームレスに統合する相乗的デュアルプロセスフレームワークであるDualRAGを提案する。
論文 参考訳(メタデータ) (2025-04-25T10:43:53Z) - Why Ask One When You Can Ask $k$? Two-Stage Learning-to-Defer to the Top-$k$ Experts [3.6787328174619254]
我々はTop-k$ Learning-to-Deferの最初のフレームワークを紹介します。
提案するTop-$k(x)$ Learning-to-Deferは,入力複雑性,エキスパート品質,コンサルテーションコストに基づいて,クエリ毎の専門家数を最適に学習する適応型拡張である。
論文 参考訳(メタデータ) (2025-04-17T14:50:40Z) - Are We Solving a Well-Defined Problem? A Task-Centric Perspective on Recommendation Tasks [46.705107776194616]
我々はRecSysタスクの定式化を解析し、入力出力構造、時間力学、候補項目選択といった重要なコンポーネントを強調した。
本稿では,タスク特異性とモデル一般化可能性のバランスについて考察し,タスク定式化がロバストな評価と効率的なソリューション開発の基礎となることを明らかにする。
論文 参考訳(メタデータ) (2025-03-27T06:10:22Z) - Convergence Rates for Softmax Gating Mixture of Experts [78.3687645289918]
機械学習モデルの効率性とスケーラビリティを向上するための効果的なフレームワークとして、Mixture of Expert (MoE)が登場した。
MoEの成功の中心は、適応的なソフトマックスゲーティングメカニズムであり、各専門家の入力に対する関連性を決定する責任を負い、それぞれの重みを動的に専門家に割り当てる。
標準ソフトマックスゲーティングまたはその変種を備えたMoEの下で,パラメータ推定と専門家推定の収束解析を行い,密度とスパースゲーティングと階層ソフトマックスゲーティングを含む。
論文 参考訳(メタデータ) (2025-03-05T06:11:24Z) - OmniParser V2: Structured-Points-of-Thought for Unified Visual Text Parsing and Its Generality to Multimodal Large Language Models [58.45517851437422]
VsTP(Visually-situated text parsing)は、自動化された文書理解の需要が高まり、最近顕著な進歩を遂げている。
既存のソリューションは、タスク固有のアーキテクチャと個々のタスクの目的に依存していることが多い。
本稿では,テキストスポッティング,キー情報抽出,テーブル認識,レイアウト解析など,VsTPの典型的なタスクを統一する汎用モデルであるOmni V2を紹介する。
論文 参考訳(メタデータ) (2025-02-22T09:32:01Z) - ACEBench: Who Wins the Match Point in Tool Usage? [68.54159348899891]
ACEBenchは、Large Language Models (LLMs)におけるツールの使用状況を評価するための包括的なベンチマークである。
データを評価方法論に基づく3つの主要なタイプに分類する。
これは、異なるデータタイプにわたるエラー原因をよりきめ細かい検査を提供する。
論文 参考訳(メタデータ) (2025-01-22T12:59:08Z) - CAISSON: Concept-Augmented Inference Suite of Self-Organizing Neural Networks [0.0]
本稿では,レトリーバル・Augmented Generation(RAG)に対する新しい階層的アプローチであるCAISSONを紹介する。
CAISSONの中核は、文書空間の補完的な組織ビューを作成するために、二重自己組織化マップ(SOM)を活用している。
CAISSONを評価するために,合成財務分析ノートと質問応答ペアを生成するフレームワークであるSynFAQAを開発した。
論文 参考訳(メタデータ) (2024-12-03T21:00:10Z) - Generalization Error Analysis for Sparse Mixture-of-Experts: A Preliminary Study [65.11303133775857]
Mixture-of-Experts (MoE)計算アマルガメート予測
Sparse MoEは、限られた数、あるいは1つの専門家だけを選択的に扱うことで、経験的に保存され、時にはパフォーマンスが向上する一方で、オーバーヘッドを大幅に削減する。
論文 参考訳(メタデータ) (2024-03-26T05:48:02Z) - Harder Tasks Need More Experts: Dynamic Routing in MoE Models [58.18526590138739]
本稿では,Mixture of Experts(MoE)モデルのための新しい動的専門家選択フレームワークを提案する。
提案手法は,各入力に対する専門家選択の信頼性レベルに基づいて,専門家を動的に選択する。
論文 参考訳(メタデータ) (2024-03-12T13:41:15Z) - Towards End-to-End Open Conversational Machine Reading [57.18251784418258]
オープン検索型会話機械読解(OR-CMR)タスクでは,機械は対話履歴とテキスト知識ベースに応答するマルチターン質問を行う必要がある。
OR-CMRを完全エンドツーエンドで統一されたテキスト・ツー・テキスト・タスクとしてモデル化し、ShARCおよびOR-ShARCデータセットを用いた実験により、提案したエンドツーエンド・フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2022-10-13T15:50:44Z) - Compositional Attention: Disentangling Search and Retrieval [66.7108739597771]
Multi-head, key-value attention は Transformer モデルとそのバリエーションのバックボーンである。
標準的なアテンションヘッドは、検索と検索の間の厳密なマッピングを学ぶ。
本稿では,標準ヘッド構造を置き換える新しいアテンション機構であるコンポジションアテンションアテンションを提案する。
論文 参考訳(メタデータ) (2021-10-18T15:47:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。