論文の概要: Benchmarking Adversarial Robustness to Bias Elicitation in Large Language Models: Scalable Automated Assessment with LLM-as-a-Judge
- arxiv url: http://arxiv.org/abs/2504.07887v1
- Date: Thu, 10 Apr 2025 16:00:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 16:21:46.254831
- Title: Benchmarking Adversarial Robustness to Bias Elicitation in Large Language Models: Scalable Automated Assessment with LLM-as-a-Judge
- Title(参考訳): LLM-as-a-Judgeによる大規模言語モデルにおけるバイアス除去に対する逆性ロバスト性の評価
- Authors: Riccardo Cantini, Alessio Orsino, Massimo Ruggiero, Domenico Talia,
- Abstract要約: 大規模言語モデル(LLM)は人工知能に革命をもたらし、機械翻訳、要約、会話エージェントの進歩を推進している。
近年の研究では、LSMは偏りのある反応を誘発するために設計された敵攻撃に弱いままである。
本研究は,LLMの逆バイアス誘発に対する堅牢性を評価するためのスケーラブルなベンチマークフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have revolutionized artificial intelligence, driving advancements in machine translation, summarization, and conversational agents. However, their increasing integration into critical societal domains has raised concerns about embedded biases, which can perpetuate stereotypes and compromise fairness. These biases stem from various sources, including historical inequalities in training data, linguistic imbalances, and adversarial manipulation. Despite mitigation efforts, recent studies indicate that LLMs remain vulnerable to adversarial attacks designed to elicit biased responses. This work proposes a scalable benchmarking framework to evaluate LLM robustness against adversarial bias elicitation. Our methodology involves (i) systematically probing models with a multi-task approach targeting biases across various sociocultural dimensions, (ii) quantifying robustness through safety scores using an LLM-as-a-Judge approach for automated assessment of model responses, and (iii) employing jailbreak techniques to investigate vulnerabilities in safety mechanisms. Our analysis examines prevalent biases in both small and large state-of-the-art models and their impact on model safety. Additionally, we assess the safety of domain-specific models fine-tuned for critical fields, such as medicine. Finally, we release a curated dataset of bias-related prompts, CLEAR-Bias, to facilitate systematic vulnerability benchmarking. Our findings reveal critical trade-offs between model size and safety, aiding the development of fairer and more robust future language models.
- Abstract(参考訳): 大規模言語モデル(LLM)は人工知能に革命をもたらし、機械翻訳、要約、会話エージェントの進歩を推進している。
しかし、それらの重要な社会的領域への統合は、ステレオタイプを永続し、公正を損なうことができる埋め込みバイアスへの懸念を提起している。
これらのバイアスは、トレーニングデータにおける歴史的不平等、言語的不均衡、敵の操作など、様々な情報源に由来する。
緩和努力にもかかわらず、最近の研究は、LSMは偏りのある反応を誘発するために設計された敵攻撃に弱いままであることを示している。
本研究は,LLMの逆バイアス誘発に対する堅牢性を評価するためのスケーラブルなベンチマークフレームワークを提案する。
私たちの方法論は
(i)様々な社会文化的側面の偏見を対象とするマルチタスク・アプローチを用いたモデルの構築
二 モデル応答の自動評価のためのLLM-as-a-Judgeアプローチを用いた安全スコアによるロバストネスの定量化及び
三 安全機構の脆弱性の調査にジェイルブレイク技術を用いること。
本分析では, 小型モデルと大規模モデルの両方において有意な偏りと, モデル安全性への影響について検討した。
また,医学などの重要な分野に対して微調整されたドメイン固有モデルの安全性を評価する。
最後に、系統的な脆弱性ベンチマークを容易にするため、バイアス関連プロンプトのキュレートデータセットであるCLEAR-Biasをリリースする。
この結果から,モデルサイズと安全性のトレードオフが指摘され,より公平で堅牢な言語モデルの開発を支援した。
関連論文リスト
- Towards Robust LLMs: an Adversarial Robustness Measurement Framework [0.0]
大規模言語モデル(LLM)は敵の摂動に弱いままであり、高い精度のアプリケーションでは信頼性を損なう。
我々はロバストネス測定および評価フレームワークを適用し、モデルパラメータへのアクセスを必要とせず、逆入力に対するLLMレジリエンスの定量化を行う。
我々の研究は、LLMの堅牢性を評価するための体系的な方法論を提供し、実世界展開のためのより信頼性の高い言語モデルの開発を進めています。
論文 参考訳(メタデータ) (2025-04-24T16:36:19Z) - MIRAGE: Multimodal Immersive Reasoning and Guided Exploration for Red-Team Jailbreak Attacks [85.3303135160762]
MIRAGEは、物語駆動型コンテキストとロール没入を利用して、マルチモーダル大規模言語モデルにおける安全性メカニズムを回避する新しいフレームワークである。
最先端のパフォーマンスを達成し、最高のベースラインよりも攻撃成功率を最大17.5%向上させる。
役割の浸漬と構造的セマンティック再構築は、モデル固有のバイアスを活性化し、モデルが倫理的保護に自発的に違反することを実証する。
論文 参考訳(メタデータ) (2025-03-24T20:38:42Z) - Fine-Grained Bias Detection in LLM: Enhancing detection mechanisms for nuanced biases [0.0]
本研究では,Large Language Models (LLMs) におけるニュアンスバイアス検出フレームワークを提案する。
このアプローチは、コンテキスト分析、注意機構による解釈可能性、および反ファクトデータ拡張を統合して、隠れたバイアスをキャプチャする。
その結果,従来の方法に比べて微妙な偏見の検出精度が向上した。
論文 参考訳(メタデータ) (2025-03-08T04:43:01Z) - LLM-Safety Evaluations Lack Robustness [58.334290876531036]
我々は、大規模言語モデルに対する現在の安全アライメント研究は、多くのノイズ源によって妨げられていると論じる。
本研究では,将来の攻撃・防衛用紙の評価において,ノイズやバイアスを低減させる一連のガイドラインを提案する。
論文 参考訳(メタデータ) (2025-03-04T12:55:07Z) - Conformal Tail Risk Control for Large Language Model Alignment [9.69785515652571]
テールイベントの定量化プロセスを自動化するため、汎用的なスコアリングモデルが作成されている。
この現象は、各スコアリングメカニズム間の潜在的な人間と機械のミスアライメントをもたらす。
ブラックボックスモデルのための軽量なキャリブレーションフレームワークを提案し,人間と機械のアライメントを保証可能な保証で保証する。
論文 参考訳(メタデータ) (2025-02-27T17:10:54Z) - Adversarial Reasoning at Jailbreaking Time [49.70772424278124]
テスト時間計算による自動ジェイルブレイクに対する逆推論手法を開発した。
我々のアプローチは、LSMの脆弱性を理解するための新しいパラダイムを導入し、より堅牢で信頼性の高いAIシステムの開発の基礎を築いた。
論文 参考訳(メタデータ) (2025-02-03T18:59:01Z) - Bias in Large Language Models: Origin, Evaluation, and Mitigation [4.606140332500086]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、バイアスへの感受性は大きな課題となっている。
本総説では, LLMの発端から現在の緩和戦略まで, バイアスの背景を概観する。
偏りのあるLLMの倫理的および法的含意について論じ、医療や刑事司法のような現実の応用における潜在的な害を強調した。
論文 参考訳(メタデータ) (2024-11-16T23:54:53Z) - HarmLevelBench: Evaluating Harm-Level Compliance and the Impact of Quantization on Model Alignment [1.8843687952462742]
本稿では,現在の脱獄技術とLLM脆弱性評価のギャップに対処することを目的としている。
私たちの貢献は、複数の害レベルにわたるモデル出力の有害性を評価するために設計された、新しいデータセットの作成を含む。
Vicuna 13B v1.5モデルをターゲットとした、最先端の脱獄攻撃の包括的なベンチマークを提供する。
論文 参考訳(メタデータ) (2024-11-11T10:02:49Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - Unveiling Safety Vulnerabilities of Large Language Models [4.562678399685183]
本稿では,AttaQと呼ばれる質問の形で,敵対的な事例を含むユニークなデータセットを提案する。
各種モデルの脆弱性を解析することにより,データセットの有効性を評価する。
脆弱なセマンティック領域を特定し命名するための新しい自動アプローチを提案する。
論文 参考訳(メタデータ) (2023-11-07T16:50:33Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of
Language Models [86.02610674750345]
AdvGLUE(Adversarial GLUE)は、様々な種類の敵攻撃の下で、現代の大規模言語モデルの脆弱性を調査し評価するための新しいマルチタスクベンチマークである。
GLUEタスクに14の逆攻撃手法を適用してAdvGLUEを構築する。
テストしたすべての言語モデルとロバストなトレーニングメソッドは、AdvGLUEではパフォーマンスが悪く、スコアは明確な精度よりもはるかに遅れています。
論文 参考訳(メタデータ) (2021-11-04T12:59:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。