Localized quasiparticles in a fluxonium with quasi-two-dimensional amorphous kinetic inductors
- URL: http://arxiv.org/abs/2504.07950v1
- Date: Thu, 10 Apr 2025 17:56:04 GMT
- Title: Localized quasiparticles in a fluxonium with quasi-two-dimensional amorphous kinetic inductors
- Authors: Trevyn F. Q. Larson, Sarah Garcia Jones, Tamás Kalmár, Pablo Aramburu Sanchez, Sai Pavan Chitta, Varun Verma, Kristen Genter, Katarina Cicak, Sae Woo Nam, Gergő Fülöp, Jens Koch, Ray W. Simmonds, András Gyenis,
- Abstract summary: Disordered superconducting materials with high kinetic inductance are an important resource to generate nonlinearity in quantum circuits.<n>In thin films fabricated from these materials, the combination of disorder and the low effective dimensionality leads to increased order parameter fluctuations and enhanced kinetic inductance values.<n>We fabricate tungsten silicide wires from quasi-two-dimensional films with one spatial dimension smaller than the superconducting coherence length and embed them into microwave resonators and fluxonium qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Disordered superconducting materials with high kinetic inductance are an important resource to generate nonlinearity in quantum circuits and create high-impedance environments. In thin films fabricated from these materials, the combination of disorder and the low effective dimensionality leads to increased order parameter fluctuations and enhanced kinetic inductance values. Among the challenges of harnessing these compounds in coherent devices are their proximity to the superconductor-insulator phase transition, the presence of broken Cooper pairs, and the two-level systems located in the disordered structure. In this work, we fabricate tungsten silicide wires from quasi-two-dimensional films with one spatial dimension smaller than the superconducting coherence length and embed them into microwave resonators and fluxonium qubits, where the kinetic inductance provides the inductive part of the circuits. We study the dependence of loss on the frequency, disorder, and geometry of the device, and find that the loss increases with the level of disorder and is dominated by the localized quasiparticles trapped in the spatial variations of the superconducting gap.
Related papers
- Cavity-assisted quantum transduction between superconducting qubits and trapped atomic particles mediated by Rydberg levels [49.1574468325115]
We present an approach for transferring quantum states from superconducting qubits to the internal states of trapped atoms or ions.<n>For experimentally demonstrated parameters of interaction strengths, dissipation, and dephasing, our scheme achieves fidelities above 95%.
arXiv Detail & Related papers (2025-01-06T18:28:18Z) - Measuring kinetic inductance and superfluid stiffness of two-dimensional superconductors using high-quality transmission-line resonators [1.9343861862849647]
We demonstrate a new technique that employs high-quality-factor superconducting resonators to measure the kinetic inductance.
We analyze the equivalent circuit model to extract the kinetic inductance, super stiffness, penetration depth, and ratio of imaginary and real parts of the complex conductivity.
Our method will be useful for practitioners in the growing fields of superconducting physics, materials science, and quantum sensing.
arXiv Detail & Related papers (2024-07-13T15:26:00Z) - Minimizing Kinetic Inductance in Tantalum-Based Superconducting Coplanar Waveguide Resonators for Alleviating Frequency Fluctuation Issues [4.3869590932623606]
tantalum films exhibit significantly larger kinetic inductances than aluminum or niobium.
We achieve a reduction in resonator frequency fluctuation by a factor of more than 100.
Our findings open up new avenues for the enhanced utilization of tantalum in large-scale superconducting chips.
arXiv Detail & Related papers (2024-05-05T14:49:33Z) - Fragmented superconductivity in the Hubbard model as solitons in Ginzburg-Landau theory [39.58317527488534]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - Tunable Capacitor For Superconducting Qubits Using an InAs/InGaAs
Heterostructure [0.0]
Development of low loss, high contrast couplers is critical for scaling up superconducting qubits.
We present a blueprint for a gate-tunable coupler realized with a two-dimensional electron gas in an InAs/InGaAs heterostructure.
arXiv Detail & Related papers (2022-12-08T23:10:55Z) - Ultrahigh-inductance materials from spinodal decomposition [30.5681951791708]
Disordered superconducting nitrides with kinetic inductance have long been considered a leading material candidate for high-inductance quantum-circuit applications.
We propose a method to drastically increase the kinetic inductance of superconducting materials via spinodal decomposition while keeping a low microwave loss.
For the first time demonstrate the utilization of spinodal decomposition to trigger the insulator-to-superconductor transition with a drastically enhanced material disorder.
arXiv Detail & Related papers (2021-11-09T12:42:09Z) - TOF-SIMS Analysis of Decoherence Sources in Nb Superconducting
Resonators [48.7576911714538]
Superconducting qubits have emerged as a potentially foundational platform technology.
Material quality and interfacial structures continue to curb device performance.
Two-level system defects in the thin film and adjacent regions introduce noise and dissipate electromagnetic energy.
arXiv Detail & Related papers (2021-08-30T22:22:47Z) - Probing defect densities at the edges and inside Josephson junctions of
superconducting qubits [58.720142291102135]
Tunneling defects in disordered materials form spurious two-level systems.
For superconducting qubits, defects in tunnel barriers of submicrometer-sized Josephson junctions couple strongest to the qubit.
We investigate whether defects appear predominantly at the edges or deep within the amorphous tunnel barrier of a junction.
arXiv Detail & Related papers (2021-08-14T15:01:35Z) - Interplay between singlet and triplet pairings in multi-band
two-dimensional oxide superconductors [0.0]
We study the superconducting properties of multi-band two-dimensional transition metal oxide superconductors.
The interplay between the singlet and the triplet pairings affects the dispersion of quasi-particle excitations in the Brillouin zone.
Non-trivial topological superconducting states become stable as a function of the charge density.
arXiv Detail & Related papers (2021-07-02T14:27:55Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.