BiasCause: Evaluate Socially Biased Causal Reasoning of Large Language Models
- URL: http://arxiv.org/abs/2504.07997v1
- Date: Tue, 08 Apr 2025 20:00:14 GMT
- Title: BiasCause: Evaluate Socially Biased Causal Reasoning of Large Language Models
- Authors: Tian Xie, Tongxin Yin, Vaishakh Keshava, Xueru Zhang, Siddhartha Reddy Jonnalagadda,
- Abstract summary: Large language models (LLMs) generate content including social bias against certain sensitive groups.<n>This paper goes one step further to evaluate the causal reasoning process of LLMs when they answer questions eliciting social biases.
- Score: 8.368810576899556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While large language models (LLMs) already play significant roles in society, research has shown that LLMs still generate content including social bias against certain sensitive groups. While existing benchmarks have effectively identified social biases in LLMs, a critical gap remains in our understanding of the underlying reasoning that leads to these biased outputs. This paper goes one step further to evaluate the causal reasoning process of LLMs when they answer questions eliciting social biases. We first propose a novel conceptual framework to classify the causal reasoning produced by LLMs. Next, we use LLMs to synthesize $1788$ questions covering $8$ sensitive attributes and manually validate them. The questions can test different kinds of causal reasoning by letting LLMs disclose their reasoning process with causal graphs. We then test 4 state-of-the-art LLMs. All models answer the majority of questions with biased causal reasoning, resulting in a total of $4135$ biased causal graphs. Meanwhile, we discover $3$ strategies for LLMs to avoid biased causal reasoning by analyzing the "bias-free" cases. Finally, we reveal that LLMs are also prone to "mistaken-biased" causal reasoning, where they first confuse correlation with causality to infer specific sensitive group names and then incorporate biased causal reasoning.
Related papers
- Evaluating Social Biases in LLM Reasoning [19.824838766883534]
This paper evaluated the 8B and 32B variants of DeepSeek-R1 against their instruction tuned counterparts on the BBQ dataset.<n>To the best of our knowledge, this empirical study is the first to assess bias issues in LLM reasoning.
arXiv Detail & Related papers (2025-02-21T10:16:07Z) - Critical-Questions-of-Thought: Steering LLM reasoning with Argumentative Querying [0.3659498819753633]
State-of-the-art Large Language models (LLMs) continue to struggle when performing logical and mathematical reasoning.
This paper makes use of the notion of critical questions from the literature on argumentation theory, focusing in particular on Toulmin's model of argumentation.
We show that employing these critical questions can improve the reasoning capabilities of LLMs.
arXiv Detail & Related papers (2024-12-19T18:51:30Z) - Failure Modes of LLMs for Causal Reasoning on Narratives [51.19592551510628]
We investigate the causal reasoning abilities of large language models (LLMs) through the representative problem of inferring causal relationships from narratives.<n>We find that even state-of-the-art language models rely on unreliable shortcuts, both in terms of the narrative presentation and their parametric knowledge.
arXiv Detail & Related papers (2024-10-31T12:48:58Z) - Self-Preference Bias in LLM-as-a-Judge [13.880151307013321]
We introduce a novel metric to measure the self-preference bias in large language models (LLMs)
Our results show GPT-4 exhibits a significant degree of self-preference bias.
This suggests that the essence of the bias lies in perplexity and that the self-preference bias exists because LLMs prefer texts more familiar to them.
arXiv Detail & Related papers (2024-10-29T07:42:18Z) - Not All LLM Reasoners Are Created Equal [58.236453890457476]
We study the depth of grade-school math problem-solving capabilities of LLMs.
We evaluate their performance on pairs of existing math word problems together.
arXiv Detail & Related papers (2024-10-02T17:01:10Z) - Social Bias Evaluation for Large Language Models Requires Prompt Variations [38.91306092184724]
Large Language Models (LLMs) exhibit considerable social biases.
This paper investigates the sensitivity of LLMs when changing prompt variations.
We show that LLMs have tradeoffs between performance and social bias caused by the prompts.
arXiv Detail & Related papers (2024-07-03T14:12:04Z) - A Peek into Token Bias: Large Language Models Are Not Yet Genuine Reasoners [58.15511660018742]
This study introduces a hypothesis-testing framework to assess whether large language models (LLMs) possess genuine reasoning abilities.
We develop carefully controlled synthetic datasets, featuring conjunction fallacy and syllogistic problems.
arXiv Detail & Related papers (2024-06-16T19:22:53Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - Prompting Fairness: Integrating Causality to Debias Large Language Models [19.76215433424235]
Large language models (LLMs) are susceptible to generating biased and discriminatory responses.<n>We propose a causality-guided debiasing framework to tackle social biases.
arXiv Detail & Related papers (2024-03-13T17:46:28Z) - CLadder: Assessing Causal Reasoning in Language Models [82.8719238178569]
We investigate whether large language models (LLMs) can coherently reason about causality.
We propose a new NLP task, causal inference in natural language, inspired by the "causal inference engine" postulated by Judea Pearl et al.
arXiv Detail & Related papers (2023-12-07T15:12:12Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.