論文の概要: Patch distribution modeling framework adaptive cosine estimator (PaDiM-ACE) for anomaly detection and localization in synthetic aperture radar imagery
- arxiv url: http://arxiv.org/abs/2504.08049v1
- Date: Thu, 10 Apr 2025 18:08:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:19:05.018648
- Title: Patch distribution modeling framework adaptive cosine estimator (PaDiM-ACE) for anomaly detection and localization in synthetic aperture radar imagery
- Title(参考訳): 合成開口レーダ画像における異常検出と位置推定のためのパッチ分布モデルアダプティブコサイン推定器(PaDiM-ACE)
- Authors: Angelina Ibarra, Joshua Peeples,
- Abstract要約: 本研究は,合成開口レーダ画像(SAR)における異常検出と局所化の新しいアプローチを提案する。
適応的コサイン推定器 (ACE) 検出統計を導入し、PaDiM は非有界距離であるマハラノビス距離を用いる。ACE はコサイン類似度測定器を用い、有界異常検出スコアを提供する。
提案手法は,複数のSARデータセットに対して評価され,画像および画素レベルでの受信操作曲線(AUROC)以下の領域を含む性能指標が得られた。
- 参考スコア(独自算出の注目度): 0.38366697175402226
- License:
- Abstract: This work presents a new approach to anomaly detection and localization in synthetic aperture radar imagery (SAR), expanding upon the existing patch distribution modeling framework (PaDiM). We introduce the adaptive cosine estimator (ACE) detection statistic. PaDiM uses the Mahalanobis distance at inference, an unbounded metric. ACE instead uses the cosine similarity metric, providing bounded anomaly detection scores. The proposed method is evaluated across multiple SAR datasets, with performance metrics including the area under the receiver operating curve (AUROC) at the image and pixel level, aiming for increased performance in anomaly detection and localization of SAR imagery. The code is publicly available: https://github.com/Advanced-Vision-and-Learning-Lab/PaDiM-LACE.
- Abstract(参考訳): 本研究は,合成開口レーダ画像(SAR)における異常検出と局所化に対する新たなアプローチを示し,既存のパッチ分散モデリングフレームワーク(PaDiM)を拡張した。
適応的コサイン推定器 (ACE) 検出法を導入する。
PaDiMは、非有界計量である推論においてマハラノビス距離を使用する。
ACEは代わりにコサイン類似度メートル法を使用し、境界異常検出スコアを提供する。
提案手法は,複数のSARデータセットに対して評価され,画像および画素レベルでの受信操作曲線(AUROC)以下の領域を含む性能指標が得られた。
コードは、https://github.com/Advanced-Vision-and-Learning-Lab/PaDiM-LACEで公開されている。
関連論文リスト
- RSAR: Restricted State Angle Resolver and Rotated SAR Benchmark [61.987291551925516]
単位円制限損失を組み込んで角度予測精度を向上させるユニットサイクルリゾルバを導入する。
提案手法は,既存の最先端教師あり手法の性能を効果的に向上させることができる。
UCRの助けを借りて、これまでで最大の多クラス回転SARオブジェクト検出データセットであるRSARをさらに注釈し、導入する。
論文 参考訳(メタデータ) (2025-01-08T11:41:47Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - SatDM: Synthesizing Realistic Satellite Image with Semantic Layout
Conditioning using Diffusion Models [0.0]
Denoising Diffusion Probabilistic Models (DDPM) は意味的レイアウトから現実的なイメージを合成する上で大きな可能性を証明している。
本稿では,セマンティックマップを用いて高品質で多様な衛星画像を生成する条件付きDDPMモデルを提案する。
提案モデルの有効性は,本研究の文脈内で導入した詳細なラベル付きデータセットを用いて検証する。
論文 参考訳(メタデータ) (2023-09-28T19:39:13Z) - APRF: Anti-Aliasing Projection Representation Field for Inverse Problem
in Imaging [74.9262846410559]
Sparse-view Computed Tomography (SVCT) は画像の逆問題である。
近年の研究では、インプリシット・ニューラル・リ表現(INR)を用いて、シングラムとCT画像の座標に基づくマッピングを構築している。
自己教師型SVCT再構成法の提案 -抗エイリアス射影表現場(APRF)-
APRFは空間的制約によって隣接する投影ビュー間の連続的な表現を構築することができる。
論文 参考訳(メタデータ) (2023-07-11T14:04:12Z) - PNI : Industrial Anomaly Detection using Position and Neighborhood
Information [6.316693022958221]
本研究では,条件付き近傍特徴量を用いて正規分布を推定する新しいアルゴリズム textbfPNI を提案する。
我々はMVTec ADベンチマークデータセットの実験を行い、異常検出と局所化におけるtextbf99.56%と textbf98.98%のAUROCスコアを用いて最先端のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2022-11-22T23:45:27Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
本稿では,分類に基づく比較的研究の少ない方法論について検討する。
我々は2つの側面でフロンティアを推し進めるための新しい手法を提案する。
航空画像のための大規模公開データセットの実験と視覚解析は,我々のアプローチの有効性を示している。
論文 参考訳(メタデータ) (2020-11-19T05:42:02Z) - PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
Localization [64.39761523935613]
本稿では,画像中の異常を同時検出・ローカライズするPatch Distribution Modeling, PaDiMを提案する。
PaDiMは、パッチの埋め込みに事前訓練された畳み込みニューラルネットワーク(CNN)を使用している。
また、CNNの異なるセマンティックレベル間の相関を利用して、異常のローカライズも改善している。
論文 参考訳(メタデータ) (2020-11-17T17:29:18Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
2つの空中画像が与えられた場合、セマンティックチェンジ検出は、土地被覆のバリエーションを特定し、それらの変化タイプをピクセルワイド境界で識別することを目的としている。
この問題は、正確な都市計画や天然資源管理など、多くの地球ビジョンに関連するタスクにおいて不可欠である。
本研究では, 広く異なる構造を持つモジュールから得られた特徴対を用いて意味変化を同定し, 同定するための非対称システマネットワーク(ASN)を提案する。
論文 参考訳(メタデータ) (2020-10-12T13:26:30Z) - Fast Distance-based Anomaly Detection in Images Using an Inception-like
Autoencoder [16.157879279661362]
畳み込みオートエンコーダ(CAE)を訓練し、画像の低次元表現を抽出する。
画像の学習表現の低次元空間に距離ベースの異常検出器を用いる。
その結果,予測性能が向上した。
論文 参考訳(メタデータ) (2020-03-12T16:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。