論文の概要: PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
Localization
- arxiv url: http://arxiv.org/abs/2011.08785v1
- Date: Tue, 17 Nov 2020 17:29:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 16:54:56.010266
- Title: PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
Localization
- Title(参考訳): PaDiM: 異常検出と局所化のためのパッチ分散モデリングフレームワーク
- Authors: Thomas Defard, Aleksandr Setkov, Angelique Loesch, Romaric Audigier
- Abstract要約: 本稿では,画像中の異常を同時検出・ローカライズするPatch Distribution Modeling, PaDiMを提案する。
PaDiMは、パッチの埋め込みに事前訓練された畳み込みニューラルネットワーク(CNN)を使用している。
また、CNNの異なるセマンティックレベル間の相関を利用して、異常のローカライズも改善している。
- 参考スコア(独自算出の注目度): 64.39761523935613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new framework for Patch Distribution Modeling, PaDiM, to
concurrently detect and localize anomalies in images in a one-class learning
setting. PaDiM makes use of a pretrained convolutional neural network (CNN) for
patch embedding, and of multivariate Gaussian distributions to get a
probabilistic representation of the normal class. It also exploits correlations
between the different semantic levels of CNN to better localize anomalies.
PaDiM outperforms current state-of-the-art approaches for both anomaly
detection and localization on the MVTec AD and STC datasets. To match
real-world visual industrial inspection, we extend the evaluation protocol to
assess performance of anomaly localization algorithms on non-aligned dataset.
The state-of-the-art performance and low complexity of PaDiM make it a good
candidate for many industrial applications.
- Abstract(参考訳): 本稿では,一級学習環境における画像中の異常を同時検出し,局所化する,パッチ分散モデリングのための新しいフレームワークPaDiMを提案する。
PaDiMは、パッチ埋め込みのための事前訓練された畳み込みニューラルネットワーク(CNN)と、正規クラスの確率的表現を得るために多変量ガウス分布を利用する。
また、cnnの異なる意味レベル間の相関を利用して、異常をよりよくローカライズする。
PaDiMは、MVTec ADとSTCデータセットの異常検出とローカライゼーションの両方において、最先端のアプローチより優れている。
実世界の産業検査と一致させるために,非アライメントデータセットにおける異常局在アルゴリズムの性能評価プロトコルを拡張した。
最先端のパフォーマンスとPaDiMの低複雑性は、多くの産業アプリケーションに好適な候補となっている。
関連論文リスト
- Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Exploring the Relationship between Samples and Masks for Robust Defect
Localization [1.90365714903665]
本稿では,モデルプロセスなしで欠陥パターンを直接検出する一段階フレームワークを提案する。
欠陥の位置を示す可能性のある明示的な情報は、直接マッピングを学ぶことを避けるために意図的に除外される。
その結果,提案手法はF1-ScoreのSOTA法よりも2.9%高い値を示した。
論文 参考訳(メタデータ) (2023-06-19T06:41:19Z) - CRADL: Contrastive Representations for Unsupervised Anomaly Detection
and Localization [2.8659934481869715]
医用画像における教師なし異常検出は、訓練中に異常データを必要とせず、任意の異常を検出し、位置決めすることを目的としている。
現在の最先端の手法のほとんどは、画像上で直接動作する潜在変数生成モデルを使用している。
コントラストプレテクストタスクで訓練されたエンコーダの低次元表現空間において,正規サンプルの分布を直接モデル化するCRADLを提案する。
論文 参考訳(メタデータ) (2023-01-05T16:07:49Z) - PNI : Industrial Anomaly Detection using Position and Neighborhood
Information [6.316693022958221]
本研究では,条件付き近傍特徴量を用いて正規分布を推定する新しいアルゴリズム textbfPNI を提案する。
我々はMVTec ADベンチマークデータセットの実験を行い、異常検出と局所化におけるtextbf99.56%と textbf98.98%のAUROCスコアを用いて最先端のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2022-11-22T23:45:27Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
既存のモデルは、いわゆる"近く分布"設定で失敗するか、劇的な低下に直面します。
本稿では, スコアに基づく生成モデルを用いて, 合成近分布異常データを生成することを提案する。
本手法は,9つのノベルティ検出ベンチマークにおいて,近分布ノベルティ検出を6%改善し,最先端のノベルティ検出を1%から5%パスする。
論文 参考訳(メタデータ) (2022-05-28T02:02:53Z) - Enforcing Mutual Consistency of Hard Regions for Semi-supervised Medical
Image Segmentation [68.9233942579956]
半教師型医用画像セグメンテーションにおいて,ラベルのないハード領域を活用するための新しい相互整合性ネットワーク(MC-Net+)を提案する。
MC-Net+モデルは、限られたアノテーションで訓練された深いモデルは、非常に不確実で容易に分類された予測を出力する傾向があるという観察に動機づけられている。
MC-Net+のセグメンテーション結果と、最先端の5つの半教師付きアプローチを3つの公開医療データセットで比較した。
論文 参考訳(メタデータ) (2021-09-21T04:47:42Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - MOCCA: Multi-Layer One-Class ClassificAtion for Anomaly Detection [16.914663209964697]
我々は,Multi-Layer One-Class Classification (MOCCA) と呼ばれる異常検出問題に対するディープラーニングアプローチを提案する。
異なる深さで抽出された情報を利用して異常なデータインスタンスを検出することで、ディープニューラルネットワークのピースワイズ的性質を明示的に活用します。
本稿では,本手法が文献で利用可能な最先端手法と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2020-12-09T08:32:56Z) - Anomaly localization by modeling perceptual features [3.04585143845864]
特徴拡張型VAEは、入力画像を画素空間や複数の異なる特徴空間で再構成することで訓練される。
MVTec異常検出およびローカライゼーションデータセットの最先端手法に対する明確な改善を実現する。
論文 参考訳(メタデータ) (2020-08-12T15:09:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。